2025 Air Quality Annual Status Report (ASR) In fulfilment of Part IV of the Environment Act 1995 Local Air Quality Management, as amended by the Environment Act 2021 Date: August, 2025 | Information | Southampton City Council | | | | | |-------------------------|----------------------------------|--|--|--|--| | Local Authority Officer | Simon Hartill | | | | | | Department | Environmental Health | | | | | | Address | Civic Centre, Southampton, SO14 | | | | | | Telephone | 0782 5823803 | | | | | | E-mail | simon.hartill@southampton.gov.uk | | | | | | Report Reference Number | ASR2025 | | | | | | Date | 25/8/25 | | | | | # **Local Responsibilities and Commitment** This ASR was prepared by the Environmental Health Department of Southampton City Council Council with the support and agreement of the following officers and departments: - Sam Guppy - Amber Titchener - This ASR has been approved by: This ASR not been signed off by a Director of Public Health. If you have any comments on this ASR please send them to Simon Hartill at: Simon.hartill@southampton.gov.uk # **Executive Summary: Air Quality in Our Area** # **Air Quality in Southampton City Council** Breathing in polluted air affects our health and costs the NHS and our society billions of pounds each year. Air pollution is recognised as a contributing factor in the onset of heart disease and cancer and can cause a range of health impacts, including effects on lung function, exacerbation of asthma, increases in hospital admissions and mortality. Air pollution particularly affects the most vulnerable in society, children, the elderly, and those with existing heart and lung conditions. Low-income communities are also disproportionately impacted by poor air quality, exacerbating health and social inequalities. Table ES 1 provides a brief explanation of the key pollutants relevant to Local Air Quality Management and the kind of activities they might arise from. **Table ES 1 - Description of Key Pollutants** | Pollutant | Description | |---|---| | Nitrogen
Dioxide (NO ₂) | Nitrogen dioxide is a gas which is generally emitted from high-
temperature combustion processes such as road transport or energy
generation. | | Sulphur
Dioxide (SO ₂) | Sulphur dioxide (SO ₂) is a corrosive gas which is predominantly produced from the combustion of coal or crude oil. | | Particulate
Matter
(PM ₁₀ and
PM _{2.5}) | Particulate matter is everything in the air that is not a gas. Particles can come from natural sources such as pollen, as well as human made sources such as smoke from fires, emissions from industry and dust from tyres and brakes. PM ₁₀ refers to particles under 10 micrometres. Fine particulate matter or PM _{2.5} are particles under 2.5 micrometres. | Southampton is a major coastal city located on the South Coast of England. It is the largest city in Hampshire, covering an area of 52 km². Southampton has a population of 248,922 (2021 Census) and is the third most population dense city in England. The city is served by numerous major transport links, including a regional airport just outside the city's northern boundary, the M3 and M27 Motorways, a major cruise, container and vehicle port and a main line railway to London and along the south coast. Southampton like all large UK cities experiences high levels of pollution in certain areas of the city. In Southampton, the fraction of mortality caused by particulate matter is attributed to 5.9% of mortality in 2021 compared to the England average of 5.5%¹. There are pockets of deprivation in the city with 11% of the population living in the top 10% of the most deprived in England. In the most deprived areas of Southampton compared to the least, asthma prevalence is approximately 1.46 times higher and emergency admissions for asthma is approximately 1.92 time higher². As a result of these high levels, Southampton has declared 10 Air Quality Management Areas (AQMAs) to date where levels have exceeded statutory air quality objectives in the past. The location of these AQMA's is shown in figure 1. The AQMA's have been declared for exceedances of the UK objective for annual mean nitrogen dioxide (NO₂) (40µg/m³). Southampton also monitors particulate matter (both PM₁₀ and PM_{2.5}), sulphur dioxide (SO₂) and ozone (O₃), however none of these pollutants have exceeded objectives since monitoring began. The recent introduction of the new air quality objective for PM_{2.5} and future standards may change this, however. For more information on Southampton's AQMAs and monitoring, please visit: Air quality management areas (southampton.gov.uk) and Monitoring and reporting (southampton.gov.uk). ¹ Public health profiles - OHID (phe.org.uk) ² Health inequalities (southampton.gov.uk) Figure 1 SCC Air Quality Management Areas #### **Air Quality Management in Southampton** Local Air Quality Management (LAQM) duties are shared between Southampton City Council's (SCC's) Scientific Service and the Sustainability teams. These include monitoring, reporting, and evaluating air quality data and delivering measures under the Air Quality Action Plan (AQAP). SCC is a unitary authority and therefore the local transport authority. Air quality officers work closely with transport teams to ensure that actions to improve the local transport network considers improvements in air quality and identifies opportunities to introduce new, innovative measures that will reduce emissions and promote active and sustainable travel. Much of the progress towards cleaner air has been led by transformational work done through transport programmes. #### **Sources of Pollution** SCC has undertaken source apportionment studies to understand what the key sources of pollution are in the city. This estimated the contribution of different sources towards levels of nitrogen oxides (NO_x) at several locations in the city. NO_x and NO₂ remains the key pollutant of concern in the city as the only pollutant which hasn't met statutory air quality objectives. Figure 2 provides two locations where source apportionment took place. The results shown that, while lots of different sources contribute towards poor air quality, including industry, the port, and sources from outside the city (background sources), road vehicles contribute the most towards levels of NO_x in these locations. This reflects national data which has long established that road vehicles, and in particular private vehicles, contribute the most to poor air quality. The data also shows how sources differ across two sites. For example, the contribution of buses is markedly higher in Northam Road where buses are relatively more common than Redbridge Road. Because of this, action to improve air quality principally focus on reducing emissions from road transport. These include measures which encourage more people to walk and cycle, use public transport, or use lower emission vehicles. #### **Air Quality Action Plan** In December 2022, The Council adopted its new <u>Air Quality Action Plan</u> (AQAP). The Plan sets out The Council's approach to tackling air quality and aims to bring about a continual improvement in the city's air quality, beyond statutory objectives. The Plan introduces 60 new measures which will be implemented or explored over the next five years, split between the following five priority areas: - 1. Empowering Communities - 2. Supporting Businesses - 3. Active and Sustainable travel - 4. Low and Zero Emission Vehicles - 5. Monitoring and Planning #### **Clean Air Strategy** SCC has adopted a <u>Clean Air Strategy</u> which sets out the council's strategic goals and priorities for improving air quality. The strategy details the ways SCC works together with partners including neighbouring local authorities, public transport operators and local businesses and organisations to identify ways to improve air quality and support ongoing improvements in air quality across the city. #### Local NO₂ Plan SCC was one of the first five local authorities required by the Secretary State to submit a full business case³ to assess whether a charging Clean Air Zone was necessary to achieve compliance with the EU (EU Ambient Air Quality Directive 2008) annual mean NO₂ legal limit of 40 µg/m³ in the shortest possible time. Air quality modelling demonstrated that compliance with NO₂ limits would be achieved at all locations in Southampton in 2020 without a charging Clean Air Zone. Without any intervention, the highest mean average concentration of NO₂ in Southampton is modelled to be 38 μ g/m³ on the A3024 Northam Bridge in 2020. While a charging Clean Air Zone was not needed, a series of non-charging measures were presented to and approved by the Secretary of State as part of the full business case for achieving compliance in the shortest possible time. These measures are known collectively as 'The Local NO₂ Plan' and consist of: Introduction of citywide traffic regulation condition requiring a minimum Euro VI (highest European standard of diesel emissions) equivalent standard for all operational buses. ³ https://www.southampton.gov.uk/modernGov/documents/s39821/CAZ Full Business Case.pdf - The introduction of new taxi and private hire vehicle licensing conditions requiring a minimum euro 6 diesel/euro 4 petrol for newly licensed vehicles in 2020 and for all licensed taxis and private hire vehicles to meet this standard by 2023. - A framework agreement and subsidies for public authorities to use the Sustainable Distribution Centre to ensure fewer, fuller, and
cleaner Heavy Goods Vehicles (HGVs) move around the city. Supported by developing delivery and service plans for organisations so they can understand how to reduce vehicle journeys associated with their business. - Targeted promotion of active and sustainable travel on the A3024 (location of highest modelled NO₂ concentrations in 2020) through the MyJourney programme. - Expansion of Low Emission Taxi Incentive Scheme for Southampton licensed taxi and private hire vehicles. Extension to support upgrades to cleaner wheelchair accessible vehicles. - A free trial scheme for taxi and private hire operators which highlights the benefits of an electric vehicle. - Two new taxi-only rapid charging points to support uptake of electric vehicles within the taxi and private hire fleet. 8 rapid chargers for open use introduced through 'Hants 2025' scheme. The Local NO₂ Plan was approved by the Secretary of State in early 2019 and has now been delivered in accordance with the expectations of central government. Minor changes to some measures were necessary due to COVID-19, however these have not had a large impact on the impact the plan has delivered. The Council is currently monitoring and evaluating the success of the plan as per the requirements of the government's Joint Air Quality Unit (JAQU) and will continue to do so in 2023 to understand implications for compliance with the EU Ambient Air Quality Directive. #### **Our Green City Plan** Our Green City Plan is The Council's Sustainability policy which sets out a series of commitments across the sustainability agenda including climate change, ecology, waste, sustainable travel, and air quality. Several commitments to air quality were made in the plan as well as a commitment to ensure air quality projects maximise co-benefits to other areas of sustainability and vice versa. This commitment and the new projects committed under the plan is further established through the newly adopted Air Quality Action Plan 2023 – 2028. #### **Electric Vehicle Strategy** The Council have delivered an Electric Vehicle Action Plan which has led to the installation of over 52 fast charge points across the city. Officers are preparing an Electric Vehicle Strategy which will aim to bring about a step change in the provision of EV infrastructure across the city, including more charging opportunities for residents and visitors outside of the city centre and on-street. This will be done by entering a partnership or concessions arrangement with a provider to ensure future demand for EV's is met. The Council is also exploring all grant opportunities including the government's On-street Residential Charging Scheme (ORCS) and Local Electric Vehicle Infrastructure (LEVI) funding and aims to submit an application to both in 2023. Under The Local NO₂ Plan and the electric taxi and van lease scheme, 2 rapid chargers have been introduced to help support the taxi trade in shifting towards electric vehicles with an additional 8 being introduced for open access under the 'Hants 2025' scheme. The Council are also investing in electric vehicles in their own fleet with currently over 70 vans in the fleet served by over 30 charge points across the depots. Figure 2 New electric vehicles in The Council's fleet (left). Lances Hill rapid and fast charger (right). #### **Connected Southampton 2040 - Our Local Transport Plan** Connected Southampton 2040 was published and adopted in March 2019. It sets out an ambitious long-term strategy supported by a short-term Implementation Plan. The Plan aims to ensure that our transport policies, strategy, and delivery plans better reflects and support bold and ambitious goals for sustainable and clean growth over the next twenty years, including: - A Zero Emission City - The Southampton Mass Transit System - A liveable city centre - Active Travel Zones - A network of Park and Ride sites - Better connectivity. The plan aspires to help in transforming public transport in the city and create active travel zones where short journeys made by walking and cycling will be the norm. More information can be found at the <u>Southampton transport website</u>. The Council adopted a <u>three-year Implementation Plan</u> in 2022 which sets out in further detail how The Council will help people move more sustainably around the city as the city recovers from the pandemic. #### **Transforming Cities Fund** As part of the 2020 Budget, the Chancellor announced the outcome of the Industrial Strategy's Transforming Cities Fund (TCF). The joint bid submitted in November 2019 by Southampton City Council and Hampshire County Council for Southampton and Hampshire was awarded £57m of Government funding towards the total £68.5m project and covers the three years to March 2023. The remainder of the funding is coming from local match contributions with the Council and its partners. This will enable Southampton City Council and Hampshire County Council to deliver joint plans for sustainable and active travel in Southampton and Hampshire in a targeted way. This is a significant level of capital transport funding that will have a transformative impact on people's journeys by bus, walking and cycling. #### Key areas in the plan include: - Accelerating the delivery of the Southampton Cycle Network so that cycle routes are safe and convenient and we can become a true cycling city. - Developing the Southampton Mass Transit System so we can encourage people to use public transport with priority for buses, new Park & Rides and reducing delays for everyone by using smart technology. Starting to change the city centre by making it a better place to walk and cycle, and by creating our gateways into the city at stations, the airport and ferry terminals. This will mean people can easily get between train, ferry, bus, plane, car, and bicycles. Further information is available on <u>Transforming Cities (southampton.gov.uk)</u> Figure 3 Portswood road scheme involving reallocation of road space to buses and cycles currently planned through TCF. One example of the scale of work being planned through the programme. #### **Future Transport Zone** Southampton City Council alongside other organisations in the wider 'Solent Transport' group were awarded £29m from the Department for Transport (DfT) to implement innovative future transport solutions around personal mobility and freight movements. The funding means the Solent area will benefit from several innovative transport solutions including smartphone apps for planning and paying for sustainable journeys, e-bike and e-scooter share scheme, and new approaches to freight distribution including drone freight trials for NHS deliveries across the Solent to the Isle of Wight. Figure 4 Beryl bikes and Voi scooters currently on trial for rental through the FTZ programme. #### **Cycling Strategy** SCC Cycling Strategy 2017-2027 was launched in 2017 which sets out The Council's plan for improving cycling rates in Southampton over the following 10 years. The Strategy outlines the work that has already been undertaken, sets out a plan of proposed improvements to the cycle network and identifies initiatives to realise the benefits that cycling can bring to the city. This strategy is accompanies by three year delivery plans. # **Actions to Improve Air Quality** Whilst air quality has improved significantly in recent decades, there are some areas where local action is needed to protect people and the environment from the effects of air pollution. The Environmental Improvement Plan⁴ sets out actions that will drive continued improvements to air quality and to meet the new national interim and long-term PM_{2.5} targets. The now published 2023 National Air Quality Strategy provides more information on local authorities' responsibilities to work towards these new targets and reduce PM_{2.5} in ⁴ Defra. Environmental Improvement Plan 2023, January 2023 their areas. The Road to Zero⁵ details the approach to reduce exhaust emissions from road transport through a number of mechanisms; this is extremely important given that the majority of Air Quality Management Areas (AQMAs) are designated due to elevated concentrations heavily influenced by transport emissions. We've seen steady improvements in air quality over the last 10 years due to the measures we've implemented, national improvements, and more sudden reductions in 2020 and 2021 as a result of the COVID19 pandemic. Despite this improvement and relevant objectives being achieved in recent years, The Council remains committed to seeing further improvements in air quality. In 2022, The Council adopted its new Air Quality Action Plan which builds on work done through the previous Air Quality Action Plan and the Local NO₂ Plan. It also brings together all the work done across the council and city which contributes towards cleaner air. In total, 60 measures are set out which will be explored or delivered in the next five years to help secure a continual improvement in air quality in the city. A number of these measures will help to address inequalities in exposure and outcomes. These include the schools and healthcare engagement projects which will incorporate air quality and deprivation data to understand where poor air quality has the greatest impact on public health and targeting action there. A commitment under the updated Air Quality Action Plan is to carry out a more detailed mapping exercise to better understand local health inequalities in the city and how they interact with air quality. This Annual Status Reports provides regular updates on work towards these measures. Table 2.2 provides an update on existing and new measures as they are brought in. For the reporting year of 2024 which this report covers, 50 measures are updated. This will be added to over coming years are more AQAP projects are developed. Key measures undertaken in 2024 include: - Finalised The Local NO2 Plan and continued the process of monitoring and evaluating its
effectiveness. - Launched the ERDF funded Electric Taxi and Van Lease scheme. 13 vehicles have taken on the scheme so far taking on a 50% cost lease of an EV vehicle. The ⁵ DfT. The Road to Zero: Next steps towards cleaner road transport and delivering our Industrial Strategy, July 2018 - project also includes installation of 8 new rapid charge points and telematics to support the shift to ultra-low emission vehicles after the offer is discontinued. - Installed a network of 8 low cost 'Zephyr' monitors across the city to support the monitoring network, focussing on residential areas to better illustrate the impact of wood burning on local communities, supporting the existing wood burning behaviour change campaign. Run in collaboration with neighbouring Hampshire LAs. - Develop the 'MappAir' model for Southampton using the Zephyr monitors and existing monitors to model in real time NO₂ and PM_{2.5} across the entire city up to 10x10m in spatial resolution. This map will be used for a variety of projects including behaviour change initiatives where the map can be used to help illustrate local pollution issues and encourage measures to reduce exposure to pollution. An extract of the model is shown below: • Associated British Ports installed two shore-side connections at the Horizon and Mayflower cruise terminals through Local Enterprise Funding. This allows compatible ships to 'plug into' mains power rather and using auxiliary engines while in port. Estimated to result in the equivalent of £10.5 million in air quality benefits, recouping the cost of investment of £7.5m without benefits to fuel savings and GHG savings. Average consumption per cruise call is between 50,000kWh and 80,000kWh depending on vessel size and duration alongside. About 120 cruise - ships connected to the mains electric in 2024. This represents approx. 20% of all cruise calls in the port. - Taxi licensing condition measure now completed with all vehicles now meeting at least Euro 6 standard, aside from around 10 wheelchair accessible vehicles. The taxi fleet continues to rapidly improve. By end of March 2024, 66% (1074 vehicles) of the fleet are hybrids, 1% (17 vehicles) are fully electric, 29% (471 vehicles) are diesel Euro 6 and 3.6% (60 vehicles) are petrol. - Adopted an enhanced partnership agreement to ensure buses operating in Southampton remain compliant with Euro VI standards. - Secured funding and delivered a schools engagement project in January 2023 to increase awareness of pollution in key schools and encourage behaviour change to avoid exposure to pollution. Recruited officer to lead the project. - Secured an extension to the FTZ funded e-scooter hire scheme and procured a provider to deliver a bike hire scheme across the city including e-bikes and normal bikes. - Delivered year five of Our Green City Plan including launching the Southampton Climate Commission, drafting a Climate Change Strategy for the city, and continuing to roll out key projects for decarbonisation including the Healthy Homes scheme. - Delivered the fourth year of the wood burning engagement campaign with the local charity The Environment Centre. The campaign aims to help support residents who burn wood to burn less and burn better. - Continuing Local NO₂ Plan evaluation to understand impact of The Plan and the pandemic on air quality in the city. Southampton City Council expects the following measures to be completed over the course of the next reporting year: - Implementing second year actions in the Air Quality Action Plan including launching schools project, securing funding, and launching healthcare project, finalising try before you buy project and more. - Continued evaluation of The Local NO₂ Plan. The Council's priority for 2025 is to continue delivering on the commitments in the Air Quality Action Plan. This will include delivering a swath of new, innovative air quality measures and integrating new powers under The Environment Act 2021 and new Air Quality Strategy. A priority area of The Plan is ensuring that residents and businesses understand their impact and empowering them to support The Council's aims of continued improvements. At the same time, The Council will continue to evaluate the data to understand the impact of The Local NO₂ Plan on air quality and continue working with the government's Joint Air Quality Unit. #### **Other Measures** Alongside the Local NO₂ Plan and new AQAP, The Council has implemented several other measures which contribute to improving air quality in the city, including: Southampton Cycle Network (SCN) and active travel To date, SCN 1 has been completed through NO2 Plan early measures funding, as well as SCN 3, 4 and 5 are completed with 6 underway. #### **SCN5 NORTHERN CYCLE FREEWAY** - MyJourney engagement with communities, businesses, and residents throughout 2024 to encourage active and sustainable travel. - Implementation of the St. Denys Active Travel Zone, including filtered permeability and community engagement is underway. Development of other Active Travel Zones is underway under the Transforming Cities programme. - The MyJourney active travel engagement programme continues to deliver effective behaviour change engagement for schools and workplaces. #### Public Transport - Successfully secured £2.7m funding to retrofit Southampton's operational buses with Clean Vehicle Retrofit Accreditation Scheme (CVRAS) accredited technology. Of the 145 buses operating in Southampton which did not meet Euro VI standard, all are now retrofitted to Euro VI equivalent standards. - Implemented a bus partnership agreement to commit buses to Euro VI standard, as well as a host of other service and performance criteria including punctuality. - Implemented park and ride service to University Hospital Southampton during weekdays and to the city centre during some weekends. Trial underway for use of the park and ride for match days to St Marys Stadium. - Continued to invest in bus lane infrastructure on key routes including Western Approach for park and ride use. - Extending the age limit for hybrid and electric private hire and hackney carriage vehicles licensed in Southampton from 9 years to 12 allowing cleaner vehicles to stay in the fleet for longer. Identifying further opportunities to introduce electric buses into the Southampton fleet. #### **Transforming Cities Programme** Delivery of the Transforming Cities Programme is underway. The St. Denys Active Travel Zone has been completed with more zones planned. Other major changes are being planned including change of access to Portswood Broadway to bus lane only, and the creation of a city centre ring road, limiting private vehicle access and encouraging sustainable modes of travel. The Adanac Park travel hub and central station transformation projects are currently under construction. #### **Future Transport Zone** The programme continues to deliver significant innovative projects across the Solent region including the e-scooter and bike hire schemes in Southampton. Opportunities for reducing congestion and emissions from freight operations are also being delivered including use of macro and micro consolidation opportunities as a result of earlier Delivery and Service Planning through The Local NO₂ Plan. #### **Electric Vehicles** - Continued investment in The Council's fleet with 70 vehicles currently in place and an aim for 90% of the fleet to be electric by 2030. - Installed 52 new public EV charge points in the city centre. Over 80 total charging points are currently publicly available in Southampton. - Application for LEVI funding to secure resource and grant for delivering a 'stepchange' in electric vehicle charging infrastructure for the city. ## **Conclusions and Priorities** No exceedances of the annual mean NO₂ objective were monitored in 2024, the fifth time this has happened since Review and Assessment began. The highest monitored mean concentration of NO_2 in Southampton at a relevant receptor was 31.4 $\mu g/m^3$ on the residential façade of 367A Millbrook Road in 2024. A reduction on 2023 when it was 34.5 $\mu g/m^3$ There were a few higher results monitored, but these were not at relevant receptors. For instance Vincents Walk Bus Stop at $39.8 \ \mu g/m^3$ 289 Millbrook Road was high at 40.4 μ g/m³, but it is on a post located on the kerb of Millbrook Road. When adjusted for distance to the nearest house it reduces to 29.7 μ g/m³. The houses along this road have long front gardens. 2024 monitoring results showed small reductions of NO₂ levels, compared 2023. This provides further evidence that levels of NO₂ have not returned to the higher pre-pandemic levels of 2019. The rapid adoption of permanent flexible and home working arrangements in workplaces is likely one of the key reasons for this, resulting in smoothed peak time congestion. In summary, exceedances halved from 8 in 2018 to only 4 in 2019 at relevant receptors, with no monitored exceedances recorded in 2020, 2021, 2022, 2023 and 2024. Defra guidance suggests that AQMAs are revoked when the highest annual average concentration of NO_2 in an AQMA fall below 36 μ g/m³ for a minimum of 3 consecutive years at residential facades. According to this criteria, the following AQMAs have been under consideration for revocation: - AQMA 2 Bitterne Road - AQMA 3 Winchester Road - AQMA 4 Town Quay Road - AQMA 6 Romsey Road - AQMA 10 New Road - AQMA 11 Victoria Road However, only 2 AQMAs , New Road (10) and Bitterne Road (2) , were recommended for revocation in the 2023 and 2024 ASR on the basis that data from 2020 has been greatly influenced by the impact of COVID19 and subsequent lockdowns. AQMA 2 and 10 are currently going through the formal legal process of revocation with consultation and political oversight. Previous ASRs highlighted the need to consider medium to long-term trends of NO₂ to understand what the long term impact of COVID19 on concentrations has been. While this 2024 ASR
highlights that it is increasingly unlikely that concentrations will rebound to concentrations monitored pre-2020, uncertainties such as potential low wind years, increases in development and traffic, further changes to working patterns in the city may have an impact. As such, The Council are taking a conservative approach by only considering AQMAs for revocation that have achieved NO₂ annual means below 36 μg/m³ for a minimum of 5 consecutive years. - 4 AQMAs meet this criteria, based on monitoring data collected by the end of 2024: - AQMA 3 Winchester Road - AQMA 4 Town Quay/Platform Road - AQMA 6 Romsey Road - AQMA 11 Victoria Road Southampton City Council propose to revoke these 4 AQMAs and will consider revoking further AQMAs in the 2026 ASR if patterns persist. #### **Priorities for 2025** Now that The Council's new Air Quality Action Plan has been adopted, the clear priority for 2025 will be delivering measures committed for year two. This includes delivering the new healthcare and schools based engagement campaigns and extending them into a wider behaviour change programme, completing the new electric taxi and van try before you buy scheme and a review of air quality planning requirements through The Local Plan. The Air Quality Action Plan integrates new requirements of the Environment Act 2021. It will be a priority for The Council to review opportunities to leverage new powers granted under the act to bring about further improvements. At the same time, The Council will continue to monitor and evaluate the impact of The Local NO₂ Plan on air quality to ensure it's had the expected impact, and that uncertainties introduced through the COVID-19 pandemic are accounted for. The Council will also continue to work between teams including public health, transport (including FTZ and TCF programme teams) and planning to ensure projects delivered in each service area can maximise co-benefits for air quality, notably transport decarbonisation, and explore further options for how The Council can improve air quality to help reduce inequalities in exposure and outcomes across population groups. # **Local Engagement and How to get Involved** The Council recognise that private vehicles continue to be the key contributor towards poor air quality in the city. As such, residents and visitors have a large impact on the city's air. Switching to more sustainable modes of travel including taking the bus or train, walking, or cycling is still the best way to help work towards clean air. MyJourney provides support to help you start travelling more sustainably. For more information, please visit the MyJourney website. If possible, working flexibly or remotely can help ease peak time congestion and pollution in the city, and, if you burn wood in your home, consider ways to burn less and burn better. You can also get in touch with the following groups that are actively promoting improvements in air quality and the environment more generally in the area: - The Environment Centre who provide support on clean ways to heat your home and advice on wood burning: <u>the Environment Centre (tEC) – Bringing the benefits of</u> <u>sustainability to everyone</u>. - Sustrans who also provide support on walking and cycling: https://www.sustrans.org.uk/ # **Local Responsibilities and Commitment** This ASR was prepared by the Environmental Health Department of Southampton City Council with the support and agreement of the following officers and departments: Simon Hartill, Environmental Health Team Sam Guppy, Environmental Health Team Iain Steane, Transport Policy Team Amber Titchener, School Engagement/Wood burning project Officer This ASR is pending approval by: - Cabinet Member for Environment and Transport - Director of Public Health If you have any comments on this ASR please send them to Simon Hartill at: Environmental Health, Civic Centre, Southampton City Council, SO14 7LY Tel: 0782 5823803 simon.hartill@southampton.gov.uk # **Table of Contents** | I | _ocal Re | sponsibilities and Commitment | i | |----------|--------------------|--|------| | Ex | ecutive | Summary: Air Quality in Our Area | ii | | , | Air Quali | ty in Southampton City Council | ji | | , | Actions t | o Improve Air Quality | xi | | (| Conclusi | ons and Priorities | .xvi | | I | ₋ocal En | gagement and How to get Involved | xx | | ı | ₋ocal Re | sponsibilities and Commitment | XX | | 1 | Local | Air Quality Management | 1 | | 2 | | ns to Improve Air Quality | | | _
2.′ | | Quality Management Areas | | |
2.2 | | gress and Impact of Measures to address Air Quality in Southampton Ci | | | | uncil | gress and impact of Measures to address All Quanty in Southampton Of | 8 | | 2.3 | B PM ₂ | 2.5 – Local Authority Approach to Reducing Emissions and/or | | | Co | | ations | 26 | | 3 | | uality Monitoring Data and Comparison with Air Quality Objectives and | | | Na | | Compliance | 28 | | 3.′ | l Sun | nmary of Monitoring Undertaken | 28 | | | 3.1.1 | Automatic Monitoring Sites | | | | 3.1.2 | Non-Automatic Monitoring Sites | 28 | | 3.2 | 2 Indi | vidual Pollutants | 29 | | | 3.2.1 | Nitrogen Dioxide (NO ₂) | 29 | | | 3.2.2 | Particulate Matter (PM ₁₀) | | | | 3.2.3 | Particulate Matter (PM _{2.5}) | | | | 3.2.4 | Sulphur Dioxide (SO ₂) | | | Αŗ | pendix | A: Monitoring Results | 33 | | Αŗ | pendix | B: Full Monthly Diffusion Tube Results for 2024 | 67 | | Αŗ | _ | C: Supporting Technical Information / Air Quality Monitoring Data QA/C | | | | | | | | I | New or (| Changed Sources Identified Within Southampton City Council During 2023 | 71 | | | | nal Air Quality Works Undertaken by Southampton City Council During 2023 | | | (| QA/QC d | of Diffusion Tube Monitoring | 71 | | | | on Tube Annualisation | | | | | on Tube Bias Adjustment Factor | | | | | ıll-off with Distance from the Road | | | (| | of Automatic Monitoring | | | | | nd PM _{2.5} Monitoring Adjustment | | | | | atic Monitoring Annualisation | | | | NO ₂ Fa | ıll-off with Distance from the Road | 77 | | Appendix D: Map(s) of Monitoring Locations and AQMAs | 79 | |---|---------------------| | Figure D.3 – AQMA 3 Winchester Road and NO2 diffusion tube monitoring locations | s 81 | | Figure D.5 – AQMA 5a (western section) Redbridge Road and NO2 diffusion tube m | • | | Figure D.6 – AQMA 5b (eastern section) Redbridge Road and NO2 diffusion tube m | onitoring locations | | Figure D.7 – AQMA 6 Romsey Road and NO2 diffusion tube monitoring locations | 85 | | Figure D.8 – AQMA 8 Commercial Road and NO2 diffusion tube monitoring location | s 86 | | Figure D.9 – AQMA 9 Burgess Road and NO2 diffusion tube monitoring locations | 87 | | Figure D.10 – AQMA 10 New Road and NO2 diffusion tube monitoring locations | 88 | | Figure D.11 – AQMA 11 Victoria Road and NO2 diffusion tube monitoring locations . | 89 | | Figure D.13 – City Centre and NO2 diffusion tube monitoring locations | 91 | | Figure D.15 – Bevois Valley and Continuous Monitoring Station (CM4) location | 93 | | Figure D.16 – Victoria Road and Continuous Monitoring Station (CM6) location | 94 | | Figure D.17 – Redbridge Road and Continuous Monitoring Station (CM7) location | 95 | | Appendix E: Summary of Air Quality Objectives in England | 96 | | Glossary of Terms | 97 | | References | 98 | # **Figures** | Figure A.1 – Trends in Annual Mean NO ₂ Concentrations | 47 | |---|------------------| | Figure A.3 – Trends in Annual Mean PM ₁₀ Concentrations | 61 | | Figure A.4 – Trends in Number of 24-Hour Mean PM ₁₀ Results > 50μg/m ³ | 63 | | Figure A.5 – Trends in Annual Mean PM _{2.5} Concentrations | 65 | | Figure D.1 – Map of Non-Automatic Monitoring Site | 79 | | Tables | | | Table 2.1 – Declared Air Quality Management Areas | 3 | | Table 2.2 – Progress on Measures to Improve Air Quality | 13 | | Table A.1 – Details of Automatic Monitoring Sites | 33 | | Table A.2 – Details of Non-Automatic Monitoring Sites | 33 | | Table A.3 – Annual Mean NO $_2$ Monitoring Results: Automatic Monitoring ($\mu g/m^3$) | 40 | | Table A.4 – Annual Mean NO₂ Monitoring Results: Non-Automatic Monitoring (μg/m | ³)41 | | Table A.5 $-$ 1-Hour Mean NO $_2$ Monitoring Results, Number of 1-Hour Means > 200 μ | g/m ³ | | | 59 | | Table A.6 – Annual Mean PM ₁₀ Monitoring Results (µg/m³) | 60 | | Table A.7 – 24-Hour Mean PM $_{ m 10}$ Monitoring Results, Number of PM $_{ m 10}$ 24-Hour Mear | ıs > | | 50μg/m³ | 62 | | Table A.8 – Annual Mean PM _{2.5} Monitoring Results (µg/m³) | 64 | | Table A.9 – SO ₂ 2024 Monitoring Results, Number of Relevant Instances | 66 | | Table B.1 – NO ₂ 2024 Diffusion Tube Results (μg/m³) | 67 | | Table C.2 – Bias Adjustment Factor | 73 | | Table C.3 – Local Bias Adjustment Calculation | 73 | | Table C.4 – Non-Automatic NO_2 Fall off With Distance Calculations (concentrations | | | presented in µg/m³) | 74 | | Table C.5 – Automatic NO ₂ Fall off With Distance Calculations (concentrations prese | ented | | in μg/m³) | 78 | | Table E.1 – Air Quality Objectives in England | 96 | # 1 Local Air Quality Management This report provides an overview of air quality in Southampton City Council during 2024 It fulfils the requirements of Local Air Quality Management (LAQM) as set out in Part IV of the Environment Act (1995), as amended by the Environment Act (2021), and the relevant Policy and Technical Guidance documents. The LAQM process places an obligation on all local authorities to regularly review and assess air quality in their areas, and to determine whether or not the air quality objectives are likely to be achieved. Where an exceedance is considered likely the local authority must declare an Air Quality Management Area (AQMA) and prepare an Air Quality Action Plan
(AQAP) setting out the measures it intends to put in place in order to achieve and maintain the objectives and the dates by which each measure will be carried out. This Annual Status Report (ASR) is an annual requirement showing the strategies employed by Southampton City Council to improve air quality and any progress that has been made. The statutory air quality objectives applicable to LAQM in England are presented in Table E.1. # 2 Actions to Improve Air Quality ## 2.1 Air Quality Management Areas Air Quality Management Areas (AQMAs) are declared when there is an exceedance or likely exceedance of an air quality objective. After declaration, the authority should prepare an Air Quality Action Plan (AQAP) within 18 months. The AQAP should specify how air quality targets will be achieved and maintained, and provide dates by which measures will be carried out. A summary of AQMAs declared by Southampton City Council can be found in Table 2.1. The table presents a description of the 9 AQMA(s) that are currently designated within Southampton City Council Appendix D: Map(s) of Monitoring Locations and AQMAs provides maps of AQMAs and also the air quality monitoring locations in relation to the AQMAs. The air quality objectives pertinent to the current AQMA designation(s) are as follows: NO₂ annual mean #### **Southampton City Council propose to revoke:** - AQMA 3 Winchester Road - AQMA 4 Town Quay/Platform Road - AQMA 6 Romsey Road - AQMA 11 Victoria Road Table 2.1 – Declared Air Quality Management Areas | AQMA
Name | Date of
Declarati
on | Pollutant
s and Air
Quality
Objectiv
es | One Line
Description | Is air quality in the AQMA influenc ed by roads controlle d by Highway s England ? | Level of
Exceedanc
e:
Declaratio
n | Level of
Exceedanc
e: Current
Year | Number
of Years
Complia
nt with
Air
Quality
Objectiv
e | Name
and Date
of AQAP
Publicati
on | Web Link to AQAP | |-----------------------------------|--|---|--|--|--|---|---|--|--| | No. 1
Bevois
Valley | Declared
July 2005 | NO2
Annual
Mean | An area including a number of properties from Charlotte Place Roundabout to Bevois Valley Road | NO | 50 | 31.1 | 5 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | No. 2
Bitterne
Road
West | Declared
July 2005,
extended
in 2012
(currently
being
revoked) | NO2
Annual
Mean | An area including a number of properties from Northam Road and along Bitterne Road West | NO | 37 | 28.6 | 5 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | AQMA
Name | Date of
Declarati
on | Pollutant
s and Air
Quality
Objectiv
es | One Line
Description | Is air quality in the AQMA influenc ed by roads controlle d by Highway s England ? | Level of
Exceedanc
e:
Declaratio
n | Level of
Exceedanc
e: Current
Year | Number
of Years
Complia
nt with
Air
Quality
Objectiv
e | Name
and Date
of AQAP
Publicati
on | Web Link to AQAP | |--|--|---|--|--|--|---|---|--|--| | No 3.
Winchest
er Road | Declared
July 2005,
reduced in
size in
2006 after
Further
Assessme
nt | NO2
Annual
Mean | An area including residential properties at the Winchester Road/Hill Lane Junction | NO | 35 | 22.8 | 6 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | No. 4
Town
Quay to
Platform
Road | Declared
July 2005,
increased
in size in
2006 after
Further
Assessme
nt | NO2
Annual
Mean | An area including a number of properties from Town Quay to Platform Road | NO | 48 | 29.7 | 7 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | AQMA
Name | Date of
Declarati
on | Pollutant
s and Air
Quality
Objectiv
es | One Line
Description | Is air quality in the AQMA influenc ed by roads controlle d by Highway s England ? | Level of
Exceedanc
e:
Declaratio
n | Level of
Exceedanc
e: Current
Year | Number
of Years
Complia
nt with
Air
Quality
Objectiv
e | Name
and Date
of AQAP
Publicati
on | Web Link to AQAP | |--|---|---|--|--|--|---|---|--|--| | No. 5
Redbridg
e to
Millbrook
Road
West | Declared July 2005, merged into one AQMA in 2012 after Further Assessme nt | NO2
Annual
Mean | An area including a number of properties along Redbridge/ Millbrook Road | YES | 45 | 31.4 | 6 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | No. 6
Romsey
Road | Declared
July 2005,
increased
in size in
2012 after
a Detailed
Assessme
nt | NO2
Annual
Mean | An area including a number of properties along Romsey Road from Teboura Way to Shirley High Street | NO | 44 | 28.7 | 6 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | AQMA
Name | Date of
Declarati
on | Pollutant
s and Air
Quality
Objectiv
es | One Line
Description | Is air quality in the AQMA influenc ed by roads controlle d by Highway s England ? | Level of
Exceedanc
e:
Declaratio
n | Level of
Exceedanc
e: Current
Year | Number
of Years
Complia
nt with
Air
Quality
Objectiv
e | Name
and Date
of AQAP
Publicati
on | Web Link to AQAP | |------------------------------|----------------------------|---|--|--|--|---|---|--|--| | No. 8
Commerci
al Road | Declared
July 2008 | NO2
Annual
Mean | An area including a number of properties along Commercial Road at the junction with Cumberland | NO | 45 | 29.3 | 5 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | No. 9
Burgess
Road | Declared
April 2012 | NO2
Annual
Mean | An area including a number of properties along Burgess Road at the junction with The Avenue | NO | 47 | 30.1 | 5 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | AQMA
Name | Date of
Declarati
on | Pollutant
s and Air
Quality
Objectiv
es | One Line
Description | Is air quality in the AQMA influenc ed by roads controlle d by Highway s England ? | Level of
Exceedanc
e:
Declaratio
n | Level of
Exceedanc
e: Current
Year | Number
of Years
Complia
nt with
Air
Quality
Objectiv
e | Name
and Date
of AQAP
Publicati
on | Web Link to AQAP | |----------------------------|---|---|---|--|--|---
---|--|--| | No. 10
New
Road | Declared
April
2012,
(currently
being
revoked) | NO2
Annual
Mean | An area including a number of properties along New Road | NO | 42 | 28 | 7 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | | No. 11
Victoria
Road | Declared
April 2012 | NO2
Annual
Mean | An area encompassi ng a number of properties along Victoria Road at the junction with Portsmouth Road | NO | 43 | 24.2 | 7 | SCC
AQAP -
Adopted
2008,
updated
2022 | https://www.southampton.gov.uk/media/zwjffm
2u/scc-aqap-2023-2028-2023-update.pdf | [☑] Southampton City Council confirm the information on UK-Air regarding their AQMA(s) is up to date. [□] Confirm that all current AQAPs have been submitted to defra # 2.2 Progress and Impact of Measures to address Air Quality in Southampton City Council Defra's appraisal of last year's ASR concluded The report is well structured, detailed, and provides the information specified in the Guidance. Defra's main comments are listed below. The following comments are designed to help inform future reports: - Following consecutive years of compliance, AQMA 10- New Road, is currently going through the formal legal process of revocation with consultation and political oversight. Furthermore, the Council propose to revoke AQMA 2- Bitterne Road West. This is welcomed. (4 more AQMAs will be revoked in 2025) - 2. Annualisation and distance correction calculations provided are robust and the correct methodology has been applied to the 2023 data where applicable. This is commended. - 3. The text "Error! Bookmark not defined" appears under the contents section of the report. For future ASR reports, The Council is highly encouraged to download the latest version of the Annual Status Report Template on Defra's Website (https://laqm.defra.gov.uk/air-quality/annual-reporting/annual-status-report-templates-england-exc-london/), and should check the report for referencing errors. This will ensure that any minor formatting issues are removed from future reports. (noted, will try to avoid error message in 2025) - 4. Extensive trend graphs and analysis have been provided for all monitoring data, which is commended. - 5. The Council has considered the comments made during previous appraisals. This is commended and the Council is encouraged to continue this approach for ASRs. - 6. Although the report was sent to Director of Public Health team, it has not been signed off yet. This is encouraged for future reports. (noted, difficult to get sign off before we submit the report to defra, due to time constraints) - 7. The Council is recommended to continue to review their current monitoring regime, specifically the addition of several new non-automatic monitoring sites (diffusion tubes) across the region. This is important as additional sites will help to identify whether there are other key areas of relevant exposure where there may be exceedances, and the appropriate measures can be adopted accordingly. (noted) Southampton City Council has taken forward a number of direct measures during the current reporting year of 2024 in pursuit of improving local air quality. Details of all measures completed, in progress or planned are set out in Table 2.2. 59 measures are included within Table 2.2, with the type of measure and the progress Southampton City Council have made during the reporting year of 2024 presented. Where there have been, or continue to be, barriers restricting the implementation of the measure, these are also presented within Table 2.2. More detail on these measures can be found in their respective Action Plans. Key completed measures are: Key measures undertaken in 2024 include: - Continued with the ERDF funded Electric Taxi and Van Lease scheme. 13 vehicles have taken on the scheme so far taking on a 50% cost lease of an EV vehicle. The project also includes installation of 8 new rapid charge points and telematics to support the shift to ultra-low emission vehicles after the offer is discontinued. - Continued to run a network of 8 low cost 'Zephyr' monitors across the city to support the monitoring network, focussing on residential areas to better illustrate the impact of wood burning on local communities, supporting the existing wood burning behaviour change campaign. - Develop the 'MappAir' model for Southampton using the Zephyr monitors and existing monitors to model in real time NO₂ and PM_{2.5} across the entire city up to 10x10m in spatial resolution. This map will be used for a variety of projects including behaviour change initiatives where the map can be used to help illustrate local pollution issues and encourage measures to reduce exposure to pollution. - Associated British Ports continue to provide two shore-side connections at the Horizon and Mayflower cruise terminals through Local Enterprise Funding. This allows compatible ships to 'plug into' mains power rather and using auxiliary engines while in port. Estimated to result in the equivalent of £10.5 million in air quality benefits. However, due to capacity issues on the local electrical grid, only one connector can be used at any one time. This issue can only be resolved by National Grid. Average consumption per cruise call is between 50,000kWh and 80,000kWh depending on vessel size and duration alongside. About 120 cruise - ships connected to the mains electric in 2024. This represents 25% of all cruise calls in the port. - Taxi licensing condition measure now completed with all vehicles now meeting at least Euro 6 standard, aside from around 10 wheelchair accessible vehicles. The taxi fleet continues to rapidly improve. By end of March 2024, 66% (1074 vehicles) of the fleet are hybrids, 1% (17 vehicles) are fully electric, 29% (471 vehicles) are diesel Euro 6 and 3.6% (60 vehicles) are petrol. - Adopted an enhanced partnership agreement to ensure buses operating in Southampton remain compliant with Euro VI standards. - Secured funding and delivered a schools engagement project in January 2023 to increase awareness of pollution in key schools and encourage behaviour change to avoid exposure to pollution. This project continued in 2024. - Secured an extension to the FTZ funded e-scooter hire scheme and procured a provider to deliver a bike hire scheme across the city including e-bikes and normal bikes. - Delivered year five of Our Green City Plan including launching the Southampton Climate Commission, drafting a Climate Change Strategy for the city, and continuing to roll out key projects for decarbonisation including the Healthy Homes scheme. - Delivered the fourth year of the wood burning engagement campaign with the local charity The Environment Centre. The campaign aims to help support residents who burn wood to burn less and burn better. - Continuing Local NO₂ Plan evaluation to understand impact of The Plan and the pandemic on air quality in the city. Southampton City Council expects the following measures to be completed over the course of the next reporting year: - Implementing second year actions in the Air Quality Action Plan including launching schools project, securing funding, and launching healthcare project, finalising try before you buy project and more. - Continued evaluation of The Local NO₂ Plan. The Council's priority for 2025 is to continue delivering on the commitments in the Air Quality Action Plan. This will include delivering a swath of new, innovative air quality measures and integrating new powers under The Environment Act 2021 and new Air Quality Strategy. A priority area of The Plan is ensuring that residents and businesses understand their impact and empowering them to support The Council's aims of continued improvements. At the same time, The Council will continue to evaluate the data to understand the impact of The Local NO₂ Plan on air quality and continue working with the government's Joint Air Quality Unit. • Southampton City Council worked to implement these measures in partnership with the following stakeholders during 2024: - Neighbouring local authorities - University Hospital Southampton - The University of Southampton - Associated British Ports - The Environment Centre - Earthsense - Blink Charging - Government departments including Defra, JAQU and DLUHC. Southampton City Council anticipates that the measures stated above, in Table 2.2 and those committed through the new Air Quality Action Plan will likely be sufficient to ensure that air quality objectives continue to be met. The principal challenges and barriers to implementation that Southampton City Council anticipates facing are delivering improvements in air quality commensurate with increasing demand on the local road network, and continued development and regeneration of the city. The council is also mindful of increasing levels of housebuilding outside of the city. As well as this, meteorological factors including potential low wind years will continue to have a sometimes overriding impact on concentrations in the city. It is hoped that these risks can be mitigated through the Local NO₂ Plan, Air Quality Action Plan, Green City Charter and continued implementation of The Local Transport Plan including major work through the Transforming Cities and Future Transport Zone programmes. Southampton City Council anticipates that the measures stated above and in Table 2.2 will achieve compliance in all AQMAs in 2025, as they have done in the previous 5 years. ### Table 2.2 – Progress on Measures to Improve Air Quality | Measure
No. | Measure Title | Category |
Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|---|--|--|---|--|---|----------------------------|-----------------------------------|----------------|--|--|---|---| | 1 | Clean Air
Zone (Local
NO2 Plan) | Promoting
Low
Emission
Transport | Low Emission
Zone (LEZ) | 2019 | 2022 | SCC, Defra,
JAQU, DfT,
New Forest
District
Council. | Clean Air Fund
and
Implementation
Fund | Fully
funded | £1
million
- £10
million | Complete | Helps ensure compliance with annual mean NO2 EU Ambient Air Quality Directive (40 µg/m3 NO2 annual average at EU Directive relevant locations) | Series of KPIs
associated with
each project within
programme. | SCC now in the process of Exiting the NO2 programme with JAQU - expected Autumn 2025 | | | 2 | Quality bus
partnership
agreement
and minimum
emission
standard for
buses | Promoting
Low
Emission
Transport | Low Emission
Zone (LEZ) | 2020 | 2021 | SCC, Local
bus
operators,
DfT | Implementation
Fund,
Transforming
Cities Fund | Fully
funded | < £10k | Implementaiton | Source apportionment of bus/coach estimated up to 38% in some locations with the highest bus movements (based on CBTF upgrades to SCC vehicle fleets). Purpose of condition is to maintain these improvements beyond 2020. | "Compliant" operatioal buses (meeting minimum Euro VI engines or Clean Vehicle Retrofit Accredited equivalent) | All buses now compliant in the city | | | 3 | My Journey | Promoting
Travel
Alternatives | Intensive
active travel
campaign &
infrastructure | 2017 | 2022 | DfT, SCC, Hampshire County Council, Portsmouth City Council, Eastleigh Borough Council | Active Travel
Fund, Access
Fund,
Transforming
Cities Fund | Fully
funded
to date | £100k -
£500k | Implementation | Not yet
quantified | Reduction in car journeys in the city | High awareness of sustainable travel options in the city amongst the population of the city | | | 4 | Air quality
planning policy
and The Local
Plan | Policy
Guidance
and
Development
Control | Air Quality
Supplementary
Planning
Guidance | 2017 | 2023 | SCC | Internal | Fully
funded | N/A | Implementation | Not yet
quantified | Impact of
development on local
air quality | Local Plan being progressed for 2026/27 Adoption - including new air quality policies | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|--|---|--|--|---|---------------------------|---|---------------------|-----------------------------------|----------------|--|--|---|--| | 5 | Cycle Lane/
Routes
Provision | Transport
Planning and
Infrastructure | Cycle network | 2013 | The Cycling
Strategy
spans 2017
to 2027 and
is supported
by 3-year
Delivery
Plans. | SCC | Early Measures
Funding, Active
Travel Funding | Partially
funded | £1
million -
£10
million | Implementation | < 1µgm3 | Estimated modal shift towards cycling. | | | | 6 | Freight
consolidation
and efficiency | Freight and
Delivery
Management | Freight
Consolidation
Centre | 2014 | 2022-2029 | SCC, JAQU | Implementation
Fund | Fully
funded | £100k -
£500k | Implementation | Approx. 0.68
tonnes of NOx
and 0.18
tonnes of PM
modelled to be
saved in 2020. | Reduction in HGV movements in the city. Use of SDC. Reduction in emissions from HGVs operating in Southampton. | | SCC
Framework with
SDC has come
to end due to
funding | | 7 | Shore power
for cruise ships | Promoting
Low
Emission
Transport | Other | 2019 | 2020-21 | SCC, ABP | Solent Local
Enterprise
Partnership | Fully
funded | £1
million -
£10
million | Implementation | If 20% cruise ships plug in by 2020, 12.1% reduction in NOx emissions estimated (based on 90% reduction in NOx emissions when ships accessing shore power), saving 8.34 tonnes of NOx and 0.31 tonnes of PM in 2020. ABP business case estimated 105 t/yr NOx, 4.8t PM2.5 savings. | Number of cruise
ships using facility.
Pollutant emissions
from cruise ships at
berth. | About 20% of all
cruise ship visits
plugged in 2024 | Local grid
capacity issues,
can only be
resolved by
national grid.
Only 1
connector can
be used at any
one time. | | 8 | Electric
Vehicle
Strategy | Promoting
Low
Emission
Transport | Procuring alternative Refuelling infrastructure to promote Low Emission Vehicles, EV recharging, Gas fuel recharging | 2017 | 2019/20 | SCC, DfT | Internal | Partially
funded | £100k -
£500k | Implementation | Private vehicle
and SCC fleet
NOx, PM
emission
reductions | Number of new public
charging points
installed over life of
programme. Number
of electric vehicles in
SCC Fleet | | | | 9 | Taxi licensing conditions | Promoting
Low
Emission
Transport | Taxi Licensing conditions | 2019 | 2019/20
(phase 1),
2022/23
(phase 2) | SCC | Internal | Fully
funded | N/A | Implementation | Approx. 1.5 tonnes of NOx emissions reduced in 2021. Emission reductions would persist beyond. | Number of licensed
taxi and private hire
vehicles | | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|---|---|--|---|---|-----------------------------------|-------------------|---------------------------------|----------------|---|---|--|--| | 10 | Low emission
taxi incentive
scheme | Promoting
Low
Emission
Transport | Taxi emission incentives | 2016 | 2021 | SCC,
Eastleigh
Borough
Council,
Defra AQ
Grant | Clean Air fund,
Defra AQ Grant | Fully funded | £100k -
£500k | Closed | The existing scheme has
£254,880 of Defra Air Quality Grant funding which at the time of scheme inception was anticipated to deliver 1681.5 Kg of NOx per year across Southampton and Eastleigh (£151,624 per tonne NOx per year), a total of 19.2% reduction in estimated total taxi emissions. NO2 Plan additional award expected to achieve 1.08 tonnes of NOx per year reduced emissions. | Alternatively fuelled
vehicles in SCC and
EBC fleet | | | | 11 | Support ABP's
Clean Air
Strategy | Policy
Guidance
and
Development
Control | Low Emissions
Strategy | 2023 | 2023 | Associated
British Ports
Southampton | Internal | Fully
funded | N/A | Complete | Measures within strategy have significant potential to deliver emissions reductions for NOx and PM. | Emissions from
activity within the Port
(i.e. shipping, NRMM)
and traffic accessing
the Port (i.e. freight,
cruise traffic). | ABP have adopted their own clean air strategy which sets out the actions they will take to reduce the impact of their operations on air quality, including implementing shore-side power. This strategy was updated in 2023. | Continued working with ABP is committed through the Air Quality Action Plan update - The Council continues to explore opportunities with the port to support both their strategy and the plan. | | 12 | Straddle
Carrier to Trial
and monitor
hybrid power | Promoting
Low
Emission
Plant | Other measure
for low
emission fuels
for stationary
and mobile
sources | 2021 | Complete | SCC, ABP,
DPworld | Defra Grant | Fully
funded | £50k -
£100k | Complete | Allows DP World to target fleet of straddle carriers for NOx, NO2, PM emission reductions. ~20% less fuel use with hybrid technology. | 1 Straddle Carrier
fitted with hybrid
technology, report
produced | Study complete
and has created
an inventory of
all straddle
carriers
operating at the
Port for DP
World. NOx
emissions from
this study for DP
World which | DPworld are continuing our investment program in Hybrid Straddle Carriers, with 11 delivered in 2021. DPworld are investigating procuring | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|--|---|-------------------------------|--|---|----------------------------------|--|-------------------|-----------------------------------|----------------|---|--|---|--| | | | | | | Jac | | | | | | Medsare | | measured NOx and NO2 emissions for six types of non- road mobile machinery (NRMM) straddle carrier diesel engines in use at the port of Southampton has been used to inform. | electric straddle
carriers in the
near future. | | 13 | Cleaner Air
Strategy
publication | Policy
Guidance
and
Development
Control | Low Emissions
Strategy | 2016 | 2016 | SCC | Internal | Fully
funded | N/A | Complete | N/A | Publication date | Clean Air Strategy adopted in November 2016 and published on the council website. | The strategy
was reviewed in
2024. | | 14 | Port booking
scheme to
incentivise low
emission
trucks | Promoting
Low
Emission
Transport | Priority parking
for LEV's | 2020 | 2020 | ABP, DP
world | N/A | Fully
funded | N/A | Complete | CAZ feasibility study will establish concentrations attributable to HGV's associate with port activity. | Emissions reductions
from port related
HGVs | Port booking
system
established
including ANPR
cameras,
charging more
polluting
vehicles more
for delivery
slots. | Euro V HGVs and older are being charged £5 per visit to promote the use of newer trucks. This scheme will potentially be enhanced through the new port parking development proposed. | | 15 | Eastern
Access
Highway
Scheme | Transport
Planning and
Infrastructure | Other | 2020 | Q4 2022 | SCC, DfT.
Highways
England | National
Productivity
Investment
Fund | Fully
funded | £1
million -
£10
million | Complete | Not yet
quantified. | Scheme complete | Includes improvements to traffic light signalling, a cycle freeway and other congestion easing measures. | | | 16 | Millbrook
Round about
A33/ A35
Capacity | Transport
Planning and
Infrastructure | Other | 2017 | Complete. | SCC. DfT | DfT
Maintenance
Challenge Fund | Fully
funded | £1
million -
£10
million | Complete | Not yet
quantified. | Traffic flow/capacity
in roundabout vicinity.
Monitored NO2
levels. | Scheme to improve capacity at A33/A35 Millbrook roundabout at the Redbridge Road/Millbrook Road AQMA on the Western Approach with anticipated benefits for air quality was completed in April 2019. | Includes
improved
access to dock
gate. | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|---|--|--|---|---------------------------|-------------------------------------|---------------------|-----------------------------------|----------------|---|---|---|--| | 17 | Bus Priority
measures | Traffic
Management | Bus route improvements | 2015 | 2021 | SCC | Transforming
Cities
Programme | Fully
funded | £10k -
50k | Implementation | Not yet
quantified. | Bus time
reliability/Bus
patronage. | Bus priority being rolled out with new bus only roads in City Centre and in-signal bus priority for extended green time | | | 18 | Retrofit for
buses: SCRT
for older
buses.
Thermal
management
for Euro V | Vehicle Fleet
Efficiency | Vehicle | 2019 | 2020 | SCC,
DfT/JAQU | Clean Bus
Technology
Fund | Fully funded | £1
million -
£10
million | Complete | Up to 99 % reduction in NOx and PM emissions. Source apportionment of bus/coach estimated up to 38% in some locations with the highest bus movements. | Trial result published, commitment from bus operators to retrofit | Clean Bus Technology Fund successful. All 145 buses retrofitted to Euro VI equivalence. | All 145 buses now retrofitted to Euro VI diesel equivalence. The Enhanced Bus Partnership agreement ensures that standards are maintained by requiring all operational buses in Southampton to meet Euro VI standards in order to use the bus priority network. Bluestar purchasing new EURO VI diesels. Power supply issues holding back implementation of electric buses based in Southampton (electric buses are operational on First Solent X4/X5) deelaying implementation of electric buses to late 2020s. | | 19 | Procure low
emission
vehicles in
Council and
partner fleets | Promoting
Low
Emission
Transport | Company Vehicle Procurement - Prioritising uptake of low emission vehicles | 2017 | Ongoing replacement | SCC | Internal | Partially
funded | £100k -
£500k | Implementation | Reduce
NOx/PM
emissions from
SCC fleet
vehicles | Number of Low
Emission Vehicles in
council Fleet | Approx. 80 EVs in the SCC fleet | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------
--|---|---|--|---|---|--|-------------------|---------------------------------|----------------|---|--|--|---| | 20 | Delivery and
Service
Planning for
public
authorities | Freight and
Delivery
Management | Delivery and
Service plans | 2017 | 2018-21 | SCC | Future
Transport Zones | Not
funded | N/A | Complete | Not yet
quantified | Improvement in freight efficiency. Reduction in number of vehicle miles and journey times. | Funding received for DSPs as part of NO2 Plan. 9 DSPs implemented including those with the City's Universities, Carnival UK and commercial hubs across the city. | | | 21 | Establish
Clean Air
Network | Policy
Guidance
and
Development
Control | Regional Groups Co- ordinating programmes to develop Area wide Strategies to reduce emissions and improve air quality | 2018 | Completed. Continued promotion and activity throughout 2018/19. | SCC, The Port, business stakeholders, Southampton University, local air pollution pressure groups, Environment Centre | Internal | Fully
funded | N/A | Complete | Indiscernible | Organisations signed-
up to CAN and
pledges made and
delivered. Events
held. | Events held
throughout 2019
including
national Clean
Air Day. | Network now closed following implementation of NO2 plan. Work with stakeholders continuing under Air Quality Action Plan and other routes including the Workplace Travel Planners Network and the upcoming Freight Quality Partnership. | | 22 | National Clean
Air Day | Public
Information | Other | 2018 | 2017 (First
NCAD),
2018
(Second),
2019 (Third) | SCC, Global
Action Plan | Internal, Defra
grant | Fully
funded | £100k -
£500k | Complete | Private vehicle
NOx, PM
emission
reductions | Number of
engagements during
campaign | SCC continues to undertake activities each clean air day since it's inception. | Clean Air Day
activities still
being held - last
one 19th June
2025 | | 24 | M271
Redbridge
junction
capacity work | Traffic
Management | Strategic
highway
improvements | 2019 | Complete | Highways
England | Government's
Roads
Investment
Strategy 2014 | Fully
funded | > £10
million | Complete | Not quantified | Traffic flow
improvement | Scheme
completed. | Includes improved capacity, shared paths, shrub planting and resurfacing with low-noise material. | | 25 | EV parking
discounts | Promoting
Low
Emission
Transport | Other | 2018 | Ongoing | SCC | Internal | Fully
funded | N/A | Complete | Reduced emissions from private vehicles | Number of EV parking permits issued | Scheme now closed. | | | 26 | Itchen Toll EV
Concessions | Promoting
Low
Emission
Transport | Other | 2018 | Ongoing | SCC | Internal | Fully
funded | N/A | Complete | Reduced
emissions from
private vehicles | Number of EV pass
transactions and
smart cities cards
issued for EV use | Scheme now closed. | | | 27 | EV car clubs | Alternatives
to private
vehicle use | Car Clubs | 2017 | 2019/20 | SCC | Transforming
Cities Fund | Partially funded | £10k -
50k | Planning | Dependent on uptake | Usage of cars | | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|---|--|--|---|--|---|-------------------|---------------------------------|----------------|--|---|---|---| | 28 | ULEV Trials
for Taxi and
Private Hire
Vehicles | Promoting
Low
Emission
Transport | Taxi emission incentives | 2019 | 2019-21 | SCC | Implementation
Fund | Fully
funded | £10k -
50k | Implementation | Reduced
emissions from
taxi and private
hire vehicles | Number of ULEV trial participants | | | | 29 | Eco Driver
Training and
telematics for
Council Fleet | Vehicle Fleet
Efficiency | Driver training
and ECO
driving aids | 2017 | Ongoing | SCC | Internal | Fully
funded | £50k -
£100k | Implementation | To be
determined. | reduce fuel usage by
10% | Funding now being used to secure a further year of the wood burning project as well as other air quality projects which are not funded through Defra grants anymore due to funding being stopped. | Project unsucessful at SCC due to several factors and internal complaints. | | 30 | Workplace
travel planning | Promoting
Travel
Alternatives | Workplace
Travel Plans | 2010 | Ongoing | SCC,
workplace
travel
planners
network | Active travel
Fund, Access
Fund, Internal | Fully
funded | £100k -
£500k | Implementation | < 1µgm3 | Workplace travel plans, uptake of sustainable modes of travel | Scaled back to
just
Southampton
businesses for
2025/26 | | | 31 | School travel planning | Promoting
Travel
Alternatives | School Travel
Plans | 2010 | ongoing | SCC | Active travel
Fund, Access
Fund, Internal | Fully
funded | £100k -
£500k | Implementation | < 1µgm3 | 100% of schools have travel plans in place | | | | 32 | Website and comms | Public
Information | Other | 2017 | Ongoing | SCC | Internal | Fully
funded | N/A | Complete | N/A | Comms plan
published | Scheme now closed. | Air quality pages linked with a new Green City site which will also provide updates on wider sustainability initiatives across the city. Air quality pages updated to improve visibility. | | 33 | City-wide fleet
composition
survey | Vehicle Fleet
Efficiency | Other | 2016 | Complete
(2017) | SCC | Implementation
Fund, internal | Fully
funded | £50k -
£100k | Complete | N/A | Survey completion | Three ANPR surveys completed as part of Local NO2 Plan monitoring and evaluation. | Surveys
continue to
inform ongoing
monitoring and
evaluation work. | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|--|--------------------------------------|--|---|--|-----------------------------|-------------------|-----------------------------------|----------------|--|--|--|---| | 34 | Domestic solid fuel burning engagement programme | Public information | Other | 2021 | Ongoing | SCC, the environment centre | Defra AQ fund | Fully funded | £100k -
£500k | Implementation | Conservative estimate PM
savings – PM2.5 = 8.6 tonnes a year, PM10 = 9 tonnes across partner LA boundaries per year. Assumes greater uptake of eco-label stoves as a result of the campaign. | Number of leaflet drops, number of face to face engagements. | The project has been running for 4 years now and over that time there has been a lot of interactions with the public, awareness raising through leafleting, film creation and social media assets, with over 372,000 impressions for the project lifetime. 920 Interactions with members of the public (conversations at community events, attendees of talks etc.) 34,487 leaflets to addresses in woodburning hot spots. UoS wrote a scientific report based on the wood bunring air quality sensors, this data is used in the campaign. Wood burning project extended another year until July 2026. | | | 35 | Green City
Charter (GCC)
and Green
City Plan | Other | Other | 2020 | 2030 | SCC, Green
City
signatories | Internal | Fully
funded | £1
million -
£10
million | Implementation | Indiscernible.
Series of
projects. | Implementation of
Green City Plan. KPIs
given in plan. Number
of signatories. | , | | | 36 | Transforming
Cities | Traffic management, Promoting Low Emission Transport, Promoting alternatives to private vehicles | Strategic
Highways
improvement | 2020 | 2025 | SCC,
Hampshire
County
Council | Transforming
Cities Fund | Fully
funded | > £10
million | Implementation | Not yet
quantified.
Likely
significant long
term benefit | Implementation of
measures as set out
in bid. | TCF programme is complete with new cycle routes, bus facilities at Albion Place and Southampton Central station, bus only roads in City Centre, | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|---|--|--|---|--|---|---------------------|-----------------------------------|----------------|---|---|---|---| | | | | | | | | | | | | | | Travel hubs in Woolston, Airport and Portswood. Focus is now on BSIP delivery on bus priority, new bus services, fare offers, promotion etc | | | 37 | Air Quality
Action Plan
2023 - 2028 | Traffic management, Promoting Low Emission Transport, Promoting alternatives to private vehicles etc. | Various | 2022 | 2026 | SCC, delivery partners | Internal | Partially
funded | £100k -
£500k | Implementation | To be
determined. | Implementation of
measures as set out
in action plan. | Measures
continue to be
implemented. | | | 38 | Port Rail
terminal
extension | Freight and
Delivery
Management | Other | 2019 | 2021 | Network Rail,
ABP | National Rail
funds | Fully
funded | > £10
million | Complete | 20% more
goods transport
by rail. | N/A | Scheme now closed. | | | 39 | Low cost
monitor
network | Monitoring
and
Modelling | Other | 2021 | 2027 | SCC,
Earthsense,
partnering
local
authorities | Defra AQ grant | Not
funded | £100k -
£500k | Implementation | Primary aim of
the project is to
enhance wood
burning public
engagement
campaign
which targets
emissions of
PM fractions. | Implementation of
low-cost monitors | Low cost monitor network extended for another 2 years until the end of 2027. 5 sensors will remain in southamptons boundary to measure NO2 and PM. Taking part in Net4Cities project which will give the city more monitoring sensors for AQ. | | | 40 | Future
Transport
Zone | Freight and Delivery Management, Promoting Low Emission Transport, Promoting alternatives to private vehicles | Freight
consolidation,
micro-mobility,
Mobility as a
Service | 2021 | 2024 | SCC and
Solent
Transport,
Funded by
DfT | Future
Transport Zones | Fully
funded | > £10
million | Planning | Not determined | Included in related
documents | FTZ extended to
December 2025 | | | 41 | Active Travel
Zones | Promoting alternatives to private vehicles, transport planning and infrastructure, | Intensive
active travel
campaign and
infrastructure | 2020 | 2022 | SCC –
Transforming
Cities Fund,
Active Travel
Fund 2 | Transforming
Cities Fund,
Active Travel
Fund | Fully
funded | £1
million -
£10
million | Implementation | Estimated ~20% reduction of traffic within an ATZ | Included in related documents | | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|---|--|--|---|--|---|-------------------|-----------------------------------|----------------|---|---|---|---| | | | Public
information | | | | | | | | | | | | | | 42 | Local Mobility
Hubs | Promoting alternatives to private vehicles, Transport Planning and Infrastructure | Car Clubs,
Other | 2024 | 2026 | SCC | Transforming
Cities Fund | Fully
funded | £500k -
£1
million | Planning | Not determined | Included in related documents | Implemented in
Woolston and
Portwood | | | 43 | Transforming
Cities Fund
corridor
improvements | Promoting
alternatives
to private
vehicles,
Transport
Planning and
Infrastructure | Strategic highway improvements, Re-prioritising road space away from cars, inc. Access management, Selective vehicle priority, bus priority, high vehicle occupancy lane | 2021 | 2016 | SCC | Transforming
Cities Fund | Fully
funded | £500k -
£1
million | Implementation | Not determined | Included in related
documents | As per line 36 | | | 44 | City Centre
Transformation | Traffic
management,
Transport
Planning and
Infrastructure | Strategic highway improvements, Re-prioritising road space away from cars, inc Access management, Selective vehicle priority, bus priority, high vehicle occupancy lane | 2022 | 2026 | SCC | Transforming
Cities Fund | Fully
Funded | > £10
million | Initiation | Not determined | Included in related
documents | Continued programme through the BSIP Programme with bus priority in New Road-Civic Centre Road corridor | | | 45 | M27/M3 Travel
Demand
Management
Project | Promoting
alternatives
to private
vehicles,
transport
planning and
infrastructure,
Public
information | Intensive
active travel
campaign and
infrastructure | 2019 | 2021/22 | SCC, Portsmouth City Council, Hampshire County Council, Highways England | Highways
England
contribution | Fully
funded | £1
million -
£10
million | Complete | Not determined | Included in related
documents | TDM
programme due
to end 2025 | | | 46 | Hants 2025 e-
taxi and van
trial | Public
information,
promoting
low emission
transport | Taxi incentives | 2022 | 2023 | SCC, Department for Levelling Up, Housing and Communities, ERDF funding | European
Regional
Development
Fund | Fully
funded | £1
million -
£10
million | Implementation | 60kg reduction
in NOx
estimated | GHG savings,
vouchers provided,
number of charge
points installed, NOx
reduction. | | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|----------------------------------
--|--|--|---|--------------------------------|---|-------------------|-----------------------------------|----------------|---|---|---|---| | 47 | E-Scooter hire scheme | Promoting Low Emission Transport, Promoting alternatives to private vehicles | Micro-mobility | 2021 | 2022 | SCC and
Solent
Transport | Future
Transport Zones | Fully
funded | £1
million -
£10
million | Implementation | To be
determined | Service use | Voi escooter
scheme now in
operation with
trial extended to
2027 | | | 48 | Bike hire
scheme | Promoting Low Emission Transport, Promoting alternatives to private vehicles | Micro-mobility | 2022 | 2023 | SCC and
Solent
Transport | Future
Transport Zones | Fully
funded | £1
million -
£10
million | Planning | To be
determined | Service use | Voi ebike hire
scheme now in
operation | | | 49 | Climate
Change
Strategy | Policy Guidance and Development Control | Other Policy | 2023 | 2023 | SCC, partner organisations | Internal | Fully
Funded | £<10k | Implementation | To be
determined | N/A | | | | 50 | Schools
engagement
project | Public
information | Face to face,
leaflets and
other materials
etc. | 2023 | 2025 | SCC, schools | Defra air quality
grant 2021/22
and 2022/23 | Fully
funded | £100k-
500k | Implementation | NO2 reduction
exposure on
clean walking
routes can be
between 6 -
23% lower.
Other
undetermined
benefits from
modal shift. | Number of monitors installed, number of pupils, teachers and parents engaged, number of students engaged etc. | Onto final few months of defra funded schools project. Over whole timeframe - around 23 schools engaged, 106 assemblies, 145 student sessions and 72 travel counts. 18 diffusion tube locations, 10 live airly monitors in schools as well as 8 indoor AQ sensors. Competitions for no idling signages and active travel banners. | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|---|-----------------------|--|--|---|---------------------------|------------------------------------|-------------------|---------------------------------|----------------|--|---|---|---| | 51 | Healthcare
engagement
project | Public
information | Face to face,
leaflets and
other materials
etc. | 2023 | 2025 | SCC, UHS,
GPs | Defra air quality
grant 2022/23 | Fully
funded | £100k-
500k | Planning | Exposure reduction benefits. 210 at risk patients taking on advice to reduce exposure. | Number of GPs
trained, number of at
risk patients engaged,
number of patients
taking on advice. | Ran a co-design workshop for materials Education of over 50 HCPs through training Development of digital and printed resources for patients and HCPs in multiple languages Clean Air Champion Network, 2 monthly webinars Reached over 200 healthcare professionals through shorter, scheduled briefings/training sessions, Targeted approach to training HCP near to AQMA's. Champions confidence to share air pollution advice with patients increasing by 84%. | | | 52 | Indoor air
quality
enagement
project | Public
information | Face to face,
leaflets and
other materials
etc. | 2023 | 2024 | SCC | Internal | Fully
funded | £<10k | Planning | To be
determined. | N/A | 8 indoor air quality sensors have been installed in schools around the city, in classrooms, halls and hallways. Indoor AQ advice shared with healthcare professionals in training and during webinars | | | 53 | Integrating
public health
data into
measures | Other | Other | 2023 | 2025 | SCC | Internal | Fully
funded | £<10k | Planning | N/A | N/A | | | | 54 | No-idling
signage | Traffic
management | Anti-idling enforcement | 2023 | 2023 | scc | Internal | Fully
funded | £<10k | Complete | To be determined. | Number of signs installed. | All 9 signs have been put up. | | | Measure
No. | Measure Title | Category | Classification | Year
Measure
Introduced
in AQAP | Estimated /
Actual
Completion
Date | Organisations
Involved | Funding Source | Funding
Status | Estimated
Cost of
Measure | Measure Status | Reduction in
Pollutant /
Emission from
Measure | Key Performance
Indicator | Progress to Date | Comments /
Barriers to
Implementation | |----------------|--|---|---|--|---|--|---|---------------------|-----------------------------------|----------------|--|--|---|---| | 55 | Freight quality
partnership | Freight and
Delivery
Management | Freight Partnerships for city centre deliveries | 2024 | 2026 | SCC, freight
quality
partnership
partners | Future
Transport
Zones, Local
NO2 Plan | Partially
funded | £50k -
£100k | Planning | To be
determined | Number of partnered
organisations.
Number of sessions
held. | | | | 56 | Identify and
promote
cleaner
walking routes | Public
information | Other | 2024 | 2024 | SCC, delivery
partner | Defra air quality
grant 2021/22
and 2022/23 | Fully
funded | £100k-
500k | Planning | 18% less exposure to NO2 and 27% less for PM2.5 for taking the clean air routes. | Delivery of system.
Uptake by
stakeholders. | City clean air route mapping tool now set up and fully functional. 2024 diffusion tube data to be used to update the tool shortly. 1339 trips generated so far from September, 3198 total miles, 18% less exposure to NO2 and 27% less for PM2.5. | | | 57 | Enhance use
of the park and
ride | Alternatives
to private
vehicle use | Bus based
park and ride | 2023 | 2024 | SCC | Transforming
Cities Fund | Fully
funded | £1
million -
£10
million | Implementation | Not determined | Number of park and ride journeys | Weekend Park
& Ride due to
start from
Adanac park in
August 2025 | | | 58 | Green Grid | Other | Other | 2024 | 2024 | scc | Internal | Fully
funded | £50k -
£100k | Implementation | To be determined. | Quantity of green infrastructure planted because of Green Grid policy. | | | | 59 | Enhance
enforcement of
smoke control
areas | Other | Other | 2024 | 2025 | SCC | Defra new
burdens funding | Fully
funded | £<10k | Complete | To be
determined. | Number of letters
sent to residents | Smoke control area letters sent to residents in Southampton in the smoke control Zone. 18,206 letters sent, 53% learnt a little or a lot from the letter with 20% already knowing about it. | | ## 2.3 PM_{2.5} – Local Authority Approach to Reducing Emissions and/or Concentrations As detailed in Policy Guidance LAQM.PG22 (Chapter 8) and the Air Quality Strategy⁶, local authorities are expected to work towards reducing emissions and/or concentrations of fine particulate matter (PM_{2.5})). There is clear evidence that PM_{2.5} (particulate matter smaller 2.5 micrometres) has a significant impact on human health, including premature mortality, allergic reactions, and cardiovascular diseases. Southampton City Council is taking the following measures to address PM_{2.5}: - The air pollution alert
service that warns registered users of predicted moderate/high air pollution alerts helps Southampton residents with respiratory disease to reduce their exposure to pollution, including particulates. The service was developed with AQDM, our data manager, with the support of our public health colleagues and the NHS. The service sends a warning email message the day before predicted moderate or high pollution is forecast by the Met Office. Residents of Southampton can register for free to receive the email alerts on our bespoke monitoring website: https://www.southamptonair.org.uk/. - Southampton also works closely with the Port operator and its customers to identify and support initiatives that will reduce emissions. The Clean Air Network will develop over the coming years to engage with the key stakeholders in the city, including the port. - The Domestic solid fuel burning engagement campaign commenced in 2020 after a successful Defra Air Quality Grant application. The campaign is delivered across Southampton City, Eastleigh Borough, Winchester City and New Forest District Council with the aim to tackle the transboundary nature of PM_{2.5} pollution. The campaign has now been running for five years and has been successful in engaging thousands of residents across Hampshire through face-to-face engagement events, social media posts and leaflet drops. The campaign was estimated to save around 8.6 tonnes a year of PM_{2.5} due to residents burning less and burning better. _ ⁶ Defra. Air Quality Strategy – Framework for Local Authority Delivery, August 2023 - The Council secured funding to implement a series of 8 low cost 'Zephyr' monitors across the city monitoring PM_{2.5} along other pollutants including NO₂, and O₃. These monitors have dramatically improved the city's coverage for PM_{2.5}. An innovative 'Mappair' modelling system linked to these monitors and the AURN has also been implemented which models concentrations of PM_{2.5} to a 10x10m resolution. These monitors and system were commissioned to help support the wood burning campaign by providing local data for residents to help them understand the impact of wood burning. - The Council will seek to utilise 'New Burdens' funding to investigate how the effectiveness of Smoke Control Areas can be improved through communications and enforcement where possible. It is recognised that the updated Environment Act provides more powers to local authorities for enforcing Smoke Control Areas. These will be reviewed in 2024 to understand how they can be used to further discourage the worst of wood burning in the city. - Several warning letters have been sent to residents, where the Council has received complaints regarding smoke nuisance within an SMA in 2024. - Smoke control area letters sent to residents in Southampton in the smoke control Zones. 18,206 letters posted, 53% learnt a little or a lot from the letter with 20% already knowing about it. - Measures focused on road transport will also bring about an improvement in PM_{2.5} concentrations as road transport is still a major source of this pollutant. # 3 Air Quality Monitoring Data and Comparison with Air Quality Objectives and National Compliance This section sets out the monitoring undertaken within 2024 by Southampton City Council and how it compares with the relevant air quality objectives. In addition, monitoring results are presented for a five-year period between 2020 and 2024 to allow monitoring trends to be identified and discussed. #### 3.1 Summary of Monitoring Undertaken #### 3.1.1 Automatic Monitoring Sites Southampton City Council undertook automatic (continuous) monitoring at 4 sites during 2024 . Table A.1 in Appendix A shows the details of the automatic monitoring sites. The www.southamptonair.org.uk page presents automatic monitoring results for Southampton City Council, with automatic monitoring results also available through the UK-Air website Maps showing the location of the monitoring sites are provided in Appendix D. Further details on how the monitors are calibrated and how the data has been adjusted are included in Appendix C. #### 3.1.2 Non-Automatic Monitoring Sites Southampton City Council undertook non- automatic (i.e. passive) monitoring of NO₂ at 73 sites (including 3 triplicate sites) during 2024. Table A.2 in Appendix A presents the details of the non-automatic sites. Maps showing the location of the monitoring sites are provided in Appendix D. Further details on Quality Assurance/Quality Control (QA/QC) for the diffusion tubes, including bias adjustments and any other adjustments applied (e.g. annualisation and/or distance correction), are included in Appendix C. #### 3.2 Individual Pollutants The air quality monitoring results presented in this section are, where relevant, adjusted for bias, annualisation (where the annual mean data capture is below 75% and greater than 25%), and distance correction. Further details on adjustments are provided in Appendix C. #### 3.2.1 Nitrogen Dioxide (NO₂) Table A.3 and Table A.4 in Appendix A compare the ratified and adjusted monitored NO₂ annual mean concentrations for the past five years with the air quality objective of 40μg/m³. Note that the concentration data presented represents the concentration at the location of the monitoring site, following the application of bias adjustment and annualisation, as required (i.e. the values are exclusive of any consideration to fall-off with distance adjustment). For diffusion tubes, the full 2024 dataset of monthly mean values is provided in Appendix B. Note that the concentration data presented in Table B.1 includes distance corrected values, only where relevant. in Appendix A compares the ratified continuous monitored NO₂ hourly mean concentrations for the past five years with the air quality objective of 200μg/m³, not to be exceeded more than 18 times per year. No exceedances of the annual mean NO₂ objective were monitored in 2024, the fifth time this has happened since Review and Assessment began. The highest monitored mean concentration of NO_2 in Southampton at a relevant receptor was 31.4 $\mu g/m^3$ on the residential façade of 367A Millbrook Road in 2024. A reduction on 2023 when it was 34.5 $\mu g/m^3$ There were a few higher results monitored, but these were not at relevant receptors. For instance Vincents Walk Bus Stop at $39.8 \mu g/m^3$ 289 Millbrook Road was high at 40.4 μ g/m³, but it is on a post located on the kerb of Millbrook Road. When adjusted for distance to the nearest house it reduces to 29.7 μ g/m³. The houses along this road have long front gardens. 2024 monitoring results showed small reductions of NO₂ levels, compared 2023. This provides further evidence that levels of NO₂ have not returned to the higher pre-pandemic levels of 2019. The rapid adoption of permanent flexible and home working arrangements in workplaces is likely one of the key reasons for this, resulting in smoothed peak time congestion. In summary, exceedances halved from 8 in 2018 to only 4 in 2019 at relevant receptors, with no monitored exceedances recorded in 2020, 2021, 2022, 2023 and 2024. Defra guidance suggests that AQMAs are revoked when the highest annual average concentration of NO₂ in an AQMA fall below 36 μ g/m³ for a minimum of 3 consecutive years at residential facades. According to this criteria, the following AQMAs have been under consideration for revocation: - AQMA 2 Bitterne Road - AQMA 3 Winchester Road - AQMA 4 Town Quay Road - AQMA 6 Romsey Road - AQMA 10 New Road - AQMA 11 Victoria Road However, only 2 AQMAs , New Road (10) and Bitterne Road (2) , were recommended for revocation in the 2023 and 2024 ASR on the basis that data from 2020 has been greatly influenced by the impact of COVID19 and subsequent lockdowns. AQMA 2 and 10 are currently going through the formal legal process of revocation with consultation and political oversight. Previous ASRs highlighted the need to consider medium to long-term trends of NO₂ to understand what the long term impact of COVID19 on concentrations has been. While this 2024 ASR highlights that it is increasingly unlikely that concentrations will rebound to concentrations monitored pre-2020, uncertainties such as potential low wind years, increases in development and traffic, further changes to working patterns in the city may have an impact. As such, The Council are taking a conservative approach by only considering AQMAs for revocation that have achieved NO₂ annual means below 36 μg/m³ for a minimum of 5 consecutive years. - 4 AQMAs meet this criteria, based on monitoring data collected by the end of 2024: - AQMA 3 Winchester Road - AQMA 4 Town Quay/Platform Road - AQMA 6 Romsey Road - AQMA 11 Victoria Road Southampton City Council propose to revoke these 4 AQMAs and will consider revoking further AQMAs in the 2026 ASR if patterns persist. #### 3.2.2 Particulate Matter (PM₁₀) Table A.6 in Appendix A: Monitoring Results compares the ratified and adjusted monitored PM₁₀ annual mean concentrations for the past five years with the air quality objective of 40μg/m³. Table A.7 in Appendix A compares the ratified continuous monitored PM_{10} daily mean concentrations for the past five years with the air quality objective of $50\mu g/m^3$, not to be exceeded more than 35 times per year. There were no exceedances of the UK objective for the PM_{10} annual mean concentration or daily mean PM_{10} in 2024. PM_{10} stayed broadly similar to previous years. At CM7 Redbridge AURN Automatic Monitoring Station, the annual average for PM_{10} was 15.5 $\mu g/m^3$, decreasing slightly from the $17\mu g/m^3$ monitored in 2023. At CM1, PM_{10} decreased to 11.4 $\mu g/m^3$ in 2024 from 14 $\mu g/m^3$ in 2023. The 2 Automatic AURN Monitoring Stations will continue monitoring PM₁₀ in future
years, dependent upon national government funding. #### 3.2.3 Particulate Matter (PM_{2.5}) Table A.8 in Appendix A presents the ratified and adjusted monitored PM_{2.5} annual mean concentrations for the past five years. $PM_{2.5}$ annual mean decreased at CM1, Brintons Road. In 2024 it was 6.9 ug/m^3 , in 2023 it was $8.3ug/m^3$. The Automatic AURN Monitoring Station, Brintons Road will continue monitoring PM_{2.5} in future years, dependent upon national government funding. An additional PM2.5 Fidas monitor has been installed, close to Southampton, in Chandlers Ford in 2025. #### 3.2.4 Sulphur Dioxide (SO₂) Table A.9 in Appendix A compares the ratified continuous monitored SO₂ concentrations for 2024 with the air quality objectives for SO₂. There were no exceedances of the UK objectives for SO₂ in 2024. The Automatic AURN Monitoring Station, Brintons Road will continue monitoring sulphur dioxide in future years, dependent upon national government funding ## **Appendix A: Monitoring Results** Table A.1 - Details of Automatic Monitoring Sites | Site ID | Site Name | Site Type | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA? | Which
AQMA? (1) | Monitoring
Technique | Distance
to
Relevant
Exposure
(m) ⁽²⁾ | Distance to
kerb of
nearest
road (m) ⁽¹⁾ | Inlet
Height
(m) | |---------|-------------------------------|---------------------|-------------------------------|--------------------------------|-------------------------|----------|--------------------|---|--|--|------------------------| | CM1 | Southampton
Centre
AURN | Urban
Background | 442579 | 112248 | NO2,
PM10,
PM2.5 | No | N/A | Chemiluminescence
(NO2), Fidas Optical
light-scattering
(PM10 and PM2.5) | 27.0 | 20.7 | 2.5 | | CM4 | Onslow
Road | Roadside | 442304 | 112771 | NO2 | Yes | AQMA No.
1 | Chemiluminescence | 10.0 | 2.0 | 1.3 | | СМ6 | Victoria
Road | Roadside | 443751 | 111123 | NO2 | Yes | AQMA No.
11 | Chemiluminescence | 1.0 | 3.0 | 1.3 | | CM7 | A33 AURN | Roadside | 437809 | 113560 | NO2,
PM10 | Yes | AQMA No.
5 | Chemiluminescence,
Fidas | 14.8 | 5.1 | 2.5 | #### Notes: - (1) N/A if not applicable - (2) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property). #### Table A.2 - Details of Non-Automatic Monitoring Sites | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |------------------------|------------------------------|---------------------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N100 | 6 Sandringham
Road | Urban
Background | 444387 | 114453 | NO2 | No | N/A | N/A | No | 2.3 | | N101 | Redbridge School
Fence | Roadside | 437548 | 113719 | NO2 | No | 0.0 | 6.3 | No | 1.6 | | N103 | 485 Millbrook
Road | Roadside | 438808 | 112903 | NO2 | 5 | 0.0 | 12.1 | No | 3.0 | | N104 | Regents Park
Junction | Roadside | 439222 | 112850 | NO2 | 5 | 2.4 | 12.0 | No | 2.6 | | N106 | 2 Romsey Road,
Oakhill | Roadside | 439752 | 113984 | NO2 | No | 0.0 | 4.4 | No | 2.1 | | N107 | Cranbury Place | Roadside | 442364 | 112890 | NO2 | 1 | 0.5 | 1.8 | No | 2.4 | | N109 | 72 Bevois Valley | Roadside | 442585 | 113248 | NO2 | 1 | 0.5 | 3.6 | No | 3.2 | | N110,
N111,
N112 | Brintons Road 3 | Urban Centre | 442579 | 112248 | NO2 | No | 27.0 | 20.7 | Yes | 3.2 | | N114 | Bitterne Library | Roadside | 444131 | 113322 | NO2 | 2 | 1.9 | 3.2 | No | 1.7 | | N115 | 54 Redbridge
Road | Roadside | 437939 | 113474 | NO2 | 5 | 0.0 | 8.7 | No | 1.8 | | N116 | 57 Redbridge
Road | Roadside | 437952 | 113407 | NO2 | 5 | 0.0 | 12.9 | No | 2.7 | | N117 | Victoria Road
(Lamp Post) | Roadside | 443752 | 111121 | NO2 | 11 | 0.8 | 2.8 | No | 2.4 | | N118 | 3 Rockstone Lane | Roadside | 442472 | 113065 | NO2 | 1 | 3.7 | 3.8 | No | 2.6 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|---|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N120 | 6-9 Canute Road | Roadside | 442716 | 111019 | NO2 | 4 | 0.0 | 3.8 | No | 1.7 | | N122 | 151 Paynes Road | Roadside | 440000 | 112633 | NO2 | 5 | 0.0 | 12.7 | No | 3.3 | | N124 | 305 Millbrook
Road | Roadside | 439741 | 112753 | NO2 | 5 | 0.0 | 9.5 | No | 2.5 | | N125 | Princes Court | Roadside | 443125 | 112641 | NO2 | 2 | 0.0 | 5.7 | No | 2.7 | | N126 | 107 St Andrews
Road | Roadside | 442365 | 112286 | NO2 | No | 1.7 | 2.0 | No | 2.9 | | N129 | South West
House | Roadside | 442554 | 111021 | NO2 | 4 | 0.0 | 2.5 | No | 2.3 | | N130 | 367A Millbrook
Road | Roadside | 439346 | 112821 | NO2 | 5 | 0.0 | 8.1 | No | 2.1 | | N131 | 142 Romsey
Road | Roadside | 439378 | 114185 | NO2 | 6 | 0.0 | 4.8 | No | 1.8 | | N134 | 435 Millbrook
Road West
Ladbrokes | Roadside | 438980 | 112861 | NO2 | 5 | 0.0 | 11.5 | No | 1.5 | | N138 | 66 Burgess Road | Roadside | 441697 | 115288 | NO2 | 9 | 0.0 | 2.3 | No | 3.2 | | N140 | 5 Commercial
Road | Roadside | 441628 | 112332 | NO2 | 8 | 2.4 | 2.2 | No | 2.6 | | N141 | Town Quay Road | Roadside | 441923 | 110988 | NO2 | 4 | 0.0 | 3.2 | No | 1.9 | | N143 | 102 Romsey
Road | Roadside | 439457 | 114150 | NO2 | No | 0.0 | 5.8 | No | 2.5 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|---|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N149 | 44B Burgess
Road | Roadside | 441552 | 115247 | NO2 | 9 | 0.0 | 2.6 | No | 1.8 | | N151 | 134 Romsey
Road | Roadside | 439394 | 114176 | NO2 | 6 | 0.0 | 5.0 | No | 2.5 | | N152 | M271 | Roadside | 437327 | 113848 | NO2 | 5 | 18.0 | 4.8 | No | 2.6 | | N158 | 24 Portsmouth
Road | Roadside | 443807 | 111123 | NO2 | No | 0.0 | 4.7 | No | 2.7 | | N159 | 35 Portsmouth
Road | Roadside | 443740 | 111147 | NO2 | No | 0.0 | 3.2 | No | 2.7 | | N162 | 263A Portswood
Road | Roadside | 442872 | 114336 | NO2 | No | 0.0 | 3.7 | No | 2.9 | | N165 | 8 The Broadway | Roadside | 442766 | 114181 | NO2 | No | 0.0 | 5.5 | No | 2.8 | | N166 | 14 New Road | Roadside | 442251 | 112129 | NO2 | 10 | 0.0 | 1.5 | No | 2.5 | | N169 | 150 Romsey
Road | Roadside | 439361 | 114195 | NO2 | 6 | 0.0 | 4.4 | No | 2.5 | | N170 | Union Castle
House (2) | Roadside | 442482 | 111003 | NO2 | 4 | NA | 2.6 | No | 2.9 | | N172 | 4 New Road | Roadside | 441522 | 112126 | NO2 | No | 0.0 | 2.0 | No | 2.7 | | N174 | 166A Bitterne
Road West | Roadside | 443959 | 113315 | NO2 | 2 | 0.0 | 6.7 | No | 2.6 | | N177 | 95 Shirley High
Street (Windsor
Castle Pub) | Roadside | 439844 | 113907 | NO2 | No | 0.0 | 4.5 | No | 2.1 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |---------------------------|---|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N178 | 2 Gover Road | Roadside | 437265 | 113682 | NO2 | No | 0.0 | 8.8 | No | 2.4 | | N184A,
N184B,
N184C | Redbridge AMS
(C) | Roadside | 437811 | 113557 | NO2 | 5 | 16.0 | 14.6 | Yes | 2.7 | | N189 | Cumberland
House | Roadside | 441790 | 112465 | NO2 | No | 0.0 | 2.1 | No | 2.5 | | N191 | Marlands House | Roadside | 441915 | 112097 | NO2 | No | 2.0 | 1.3 | No | 2.6 | | N192 | Above Bar Street
Bus Stop | Roadside | 441961 | 112029 | NO2 | No | NA | 1.3 | No | 2.6 | | N193 | Above Bar Street
Taxi Rank | Roadside | 441975 | 112031 | NO2 | No | NA | 4.3 | No | 2.7 |
 N194 | Vincents Walk
Bus Stop | Roadside | 442090 | 111775 | NO2 | No | NA | 4.0 | No | 2.5 | | N195 | Bargate Street | Roadside | 441945 | 111655 | NO2 | No | NA | 0.7 | No | 2.7 | | N197 | 351 Winchester
Road | Roadside | 440957 | 115151 | NO2 | No | 0.0 | 5.5 | No | 1.8 | | N198A,
N198B,
N198C | Onslow Road (C) | Roadside | 442304 | 112771 | NO2 | 3 | NA | 2.6 | Yes | 1.8 | | N199 | Dorset
Street/Charlottes
Place Crossing | Roadside | 442210 | 112583 | NO2 | 1 | 16.5 | 3.5 | No | 2.0 | | N200 | Northam Bridge
South | Roadside | 443160 | 112765 | NO2 | 1 | 13.9 | 4.0 | No | 2.0 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |----------------------|-----------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N201 | 289 Millbrook
Road West | Roadside | 439759 | 112738 | NO2 | No | 6.8 | 1.2 | No | 2.2 | | N202 | Redbridge
Causeway North | Roadside | 437166 | 113755 | NO2 | No | NA | 1.2 | No | 2.6 | | N204 | 6 Lodge Road | Roadside | 442542 | 113261 | NO2 | No | 2.2 | 2.1 | No | 2.4 | | N206 | Charlottes Place | Roadside | 442265 | 112516 | NO2 | No | 5.0 | 2.2 | No | 2.5 | | N207 | 205 Waterhouse
Lane | Roadside | 439698 | 112806 | NO2 | No | 3.5 | 4.0 | No | 1.5 | | N208 | Sherwood Close | Roadside | 441365 | 115202 | NO2 | No | 11.7 | 1.9 | No | 2.5 | | N209 | 40 Burgess Road | Roadside | 441246 | 115138 | NO2 | No | 2.2 | 1.6 | No | 3.2 | | N210 | 18 Burgess Road | Roadside | 441122 | 115118 | NO2 | No | 4.0 | 1.7 | No | 1.5 | | N211 | 4 Coniston Road | Roadside | 437332 | 113873 | NO2 | No | 0.0 | 4.2 | No | 2.2 | | N214 | 64 Burgess Road
2019 | Roadside | 441677 | 115280 | NO2 | No | 0.0 | 5.2 | No | 2.5 | | N216 | 73 Lodge Road | Roadside | 442352 | 113486 | NO2 | No | 1.4 | 4.3 | No | 2.0 | | N217 | 11 Saxon Road | Roadside | 440751 | 112188 | NO2 | No | 3.0 | 1.3 | No | 2.4 | | N218 | 112 St Denys
Road | Roadside | 443547 | 114101 | NO2 | No | 0.5 | 1.2 | No | 2.4 | | Diffusion
Tube ID | Site Name | Site Type | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Pollutants
Monitored | In AQMA?
Which
AQMA? | Distance
to
Relevant
Exposure
(m) ⁽¹⁾ | Distance to
kerb of
nearest
road (m) ⁽²⁾ | Tube Co-
located with
a
Continuous
Analyser? | Tube
Height
(m) | |---------------------------|--------------------------|-----------|-------------------------------|--------------------------------|-------------------------|----------------------------|--|--|--|-----------------------| | N219 | 10 Regents Park
Road | Roadside | 439248 | 112862 | NO2 | 5 | 0.5 | 5.0 | No | 1.6 | | N220A,
N220B,
N220C | 253 Basset
Avenue (C) | Roadside | 441926 | 116956 | NO2 | No | 0.5 | 1.2 | No | 3.2 | #### Notes: - (1) 0m if the monitoring site is at a location of exposure (e.g. installed on the façade of a residential property). - (2) N/A if not applicable. Table A.3 – Annual Mean NO₂ Monitoring Results: Automatic Monitoring (μg/m³) | Site ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid Data
Capture
2024 (%) | 2020 | 2021 | 2022 | 2023 | 2024 | |---------|-------------------------------|--------------------------------|------------------|--|-----------------------------------|------|------|------|------|------| | CM1 | 442579 | 112248 | Urban Background | 100.0 | 97.4 | 22.5 | 25 | 24 | 23 | 20.1 | | CM4 | 442304 | 112771 | Roadside | 65.0 | 65.0 | 31.0 | 32 | 31 | 28.4 | 28.1 | | CM6 | 443751 | 111123 | Roadside | 93.2 | 93.2 | 27.3 | 33 | 26 | 23.9 | 22.0 | | CM7 | 437809 | 113560 | Roadside | 100.0 | 98.9 | 26.8 | 26 | 28 | 25 | 22.7 | - ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22 - ⊠ Reported concentrations are those at the location of the monitoring site (annualised, as required), i.e. prior to any fall-off with distance - ☑ Where exceedances of the NO₂ annual mean objective occur at locations not representative of relevant exposure, the fall-off with distance concentration has been calculated and reported concentration provided in brackets for 2024. #### Notes: The annual mean concentrations are presented as µg/m³. Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Table A.4 – Annual Mean NO₂ Monitoring Results: Non-Automatic Monitoring (μg/m³) | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid
Data
Capture
2024
(%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |------------------------|-------------------------------|--------------------------------|------------------|--|--|------|------|------|------|------| | N100 | 444387 | 114453 | Urban Background | 83.0 | 83.0 | 13.3 | 17.0 | 17.0 | 14.5 | 13.6 | | N101 | 437548 | 113719 | Roadside | 100.0 | 100.0 | 30.6 | 34.0 | 33.4 | 30.5 | 28.6 | | N103 | 438808 | 112903 | Roadside | 100.0 | 100.0 | 23.5 | 23.7 | 23.7 | 22.0 | 20.4 | | N104 | 439222 | 112850 | Roadside | 100.0 | 100.0 | 30.4 | 28.5 | 31.0 | 27.5 | 25.1 | | N106 | 439752 | 113984 | Roadside | 100.0 | 100.0 | 27.7 | 29.0 | 27.1 | 26.5 | 24.6 | | N107 | 442364 | 112890 | Roadside | 100.0 | 100.0 | 32.4 | 36.2 | 36.2 | 34.5 | 31.1 | | N109 | 442585 | 113248 | Roadside | 100.0 | 100.0 | 25.9 | 30.4 | 29.4 | 28.4 | 25.5 | | N110,
N111,
N112 | 442579 | 112248 | Urban Centre | 90.6 | 90.6 | 21.9 | 23.8 | 22.9 | 21.2 | 19.7 | | N114 | 444131 | 113322 | Roadside | 100.0 | 100.0 | 25.0 | 27.2 | 28.2 | 26.6 | 24.6 | | N115 | 437939 | 113474 | Roadside | 90.6 | 90.6 | 26.0 | 27.0 | 26.9 | 23.4 | 21.0 | | N116 | 437952 | 113407 | Roadside | 100.0 | 100.0 | 25.9 | 27.1 | 26.1 | 22.2 | 21.6 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid
Data
Capture
2024
(%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |----------------------|-------------------------------|--------------------------------|-----------|--|--|------|------|------|------|------| | N117 | 443752 | 111121 | Roadside | 100.0 | 100.0 | 27.0 | 29.1 | 27.5 | 26.4 | 24.2 | | N118 | 442472 | 113065 | Roadside | 75.0 | 75.0 | 25.2 | 28.0 | 26.7 | 25.5 | 21.3 | | N120 | 442716 | 111019 | Roadside | 92.5 | 92.5 | 26.4 | 30.8 | 28.0 | 29.0 | 29.7 | | N122 | 440000 | 112633 | Roadside | 100.0 | 100.0 | 23.8 | 25.9 | 24.8 | 22.0 | 20.3 | | N124 | 439741 | 112753 | Roadside | 100.0 | 100.0 | 27.5 | 27.7 | 27.1 | 25.0 | 23.8 | | N125 | 443125 | 112641 | Roadside | 100.0 | 100.0 | 26.9 | 29.2 | 30.3 | 27.1 | 24.8 | | N126 | 442365 | 112286 | Roadside | 90.6 | 90.6 | 25.0 | 27.7 | 28.0 | 25.8 | 26.6 | | N129 | 442554 | 111021 | Roadside | 92.5 | 92.5 | 22.0 | 25.1 | 24.6 | 22.4 | 20.9 | | N130 | 439346 | 112821 | Roadside | 100.0 | 100.0 | 34.2 | 36.5 | 35.9 | 33.1 | 31.4 | | N131 | 439378 | 114185 | Roadside | 100.0 | 100.0 | 28.7 | 29.7 | 27.6 | 25.9 | 24.9 | | N134 | 438980 | 112861 | Roadside | 100.0 | 100.0 | 27.4 | 28.5 | 29.1 | 27.2 | 24.6 | | N138 | 441697 | 115288 | Roadside | 100.0 | 100.0 | 33.6 | 36.6 | 34.1 | 31.3 | 30.1 | | N140 | 441628 | 112332 | Roadside | 100.0 | 100.0 | 33.3 | 36.0 | 35.0 | 32.7 | 29.3 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid
Data
Capture
2024
(%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |----------------------|-------------------------------|--------------------------------|-----------|--|--|------|------|------|------|------| | N141 | 441923 | 110988 | Roadside | 100.0 | 100.0 | 25.0 | 28.1 | 28.6 | 26.2 | 25.9 | | N143 | 439457 | 114150 | Roadside | 92.5 | 92.5 | 27.6 | 28.4 | 27.1 | 26.2 | 25.3 | | N149 | 441552 | 115247 | Roadside | 100.0 | 100.0 | 26.5 | 29.6 | 28.3 | 26.9 | 28.3 | | N151 | 439394 | 114176 | Roadside | 100.0 | 100.0 | 29.2 | 30.5 | 28.6 | 26.7 | 23.5 | | N152 | 437327 | 113848 | Roadside | 100.0 | 100.0 | 34.1 | 33.2 | 33.3 | 29.9 | 28.0 | | N158 | 443807 | 111123 | Roadside | 100.0 | 100.0 | 29.3 | 30.8 | 29.0 | 27.9 | 25.8 | | N159 | 443740 | 111147 |
Roadside | 100.0 | 100.0 | 27.5 | 30.4 | 26.9 | 26.3 | 24.9 | | N162 | 442872 | 114336 | Roadside | 100.0 | 100.0 | 26.3 | 28.5 | 28.5 | 27.2 | 25.5 | | N165 | 442766 | 114181 | Roadside | 92.5 | 92.5 | 25.3 | 27.7 | 28.5 | 25.4 | 23.6 | | N166 | 442251 | 112129 | Roadside | 83.0 | 83.0 | 24.9 | 28.9 | 29.2 | 28.0 | 28.0 | | N169 | 439361 | 114195 | Roadside | 100.0 | 100.0 | 33.5 | 33.1 | 31.8 | 28.9 | 28.7 | | N170 | 442482 | 111003 | Roadside | 75.0 | 75.0 | 26.8 | 32.8 | 30.8 | 29.6 | 27.0 | | N172 | 441522 | 112126 | Roadside | 100.0 | 100.0 | 30.8 | 31.5 | 31.9 | 30.3 | 25.7 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid
Data
Capture
2024
(%) (2) | 2020 | 2021 | 2022 | 2023 | 2024 | |---------------------------|-------------------------------|--------------------------------|-----------|--|---|------|------|------|------|------| | N174 | 443959 | 113315 | Roadside | 100.0 | 100.0 | 31.6 | 33.3 | 31.5 | 30.7 | 28.6 | | N177 | 439844 | 113907 | Roadside | 100.0 | 100.0 | 26.6 | 28.9 | 28.5 | 26.4 | 24.8 | | N178 | 437265 | 113682 | Roadside | 92.5 | 92.5 | 19.2 | 19.1 | 19.7 | 16.1 | 16.0 | | N184A,
N184B,
N184C | 437811 | 113557 | Roadside | 100.0 | 100.0 | 29.6 | 28.6 | 30.1 | 26.6 | 24.2 | | N189 | 441790 | 112465 | Roadside | 100.0 | 100.0 | 27.6 | 30.5 | 28.6 | 27.3 | 22.2 | | N191 | 441915 | 112097 | Roadside | 100.0 | 100.0 | 33.5 | 33.9 | 33.0 | 32.1 | 30.9 | | N192 | 441961 | 112029 | Roadside | 83.0 | 83.0 | 32.9 | 34.3 | 32.8 | 29.9 | 31.3 | | N193 | 441975 | 112031 | Roadside | 100.0 | 100.0 | 26.3 | 26.5 | 26.3 | 25.7 | 23.8 | | N194 | 442090 | 111775 | Roadside | 100.0 | 100.0 | 38.4 | 37.0 | 40.1 | 36.7 | 39.8 | | N195 | 441945 | 111655 | Roadside | 90.6 | 90.6 | 31.8 | 31.2 | 32.4 | 28.6 | 25.7 | | N197 | 440957 | 115151 | Roadside | 100.0 | 100.0 | 24.2 | 26.6 | 26.7 | 24.8 | 22.8 | | N198A,
N198B,
N198C | 442304 | 112771 | Roadside | 100.0 | 100.0 | 26.2 | 28.8 | 27.9 | 26.5 | 23.9 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid
Data
Capture
2024
(%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |----------------------|-------------------------------|--------------------------------|-----------|--|--|------|------|------|------|------| | N199 | 442210 | 112583 | Roadside | 92.5 | 92.5 | 30.9 | 33.5 | 31.4 | 26.9 | 24.7 | | N200 | 443160 | 112765 | Roadside | 100.0 | 100.0 | 26.9 | 29.0 | 28.5 | 27.3 | 27.3 | | N201 | 439759 | 112738 | Roadside | 100.0 | 100.0 | 39.6 | 45.6 | 46.7 | 43.8 | 40.4 | | N202 | 437166 | 113755 | Roadside | 90.6 | 90.6 | 37.8 | 36.9 | 37.5 | 36.8 | 31.6 | | N204 | 442542 | 113261 | Roadside | 92.5 | 92.5 | 25.2 | 29.7 | 29.3 | 27.2 | 25.4 | | N206 | 442265 | 112516 | Roadside | 90.6 | 90.6 | 30.8 | 32.5 | 34.6 | 31.8 | 28.5 | | N207 | 439698 | 112806 | Roadside | 100.0 | 100.0 | 27.8 | 26.5 | 27.7 | 24.2 | 23.0 | | N208 | 441365 | 115202 | Roadside | 100.0 | 100.0 | 23.8 | 27.3 | 26.0 | 24.0 | 23.0 | | N209 | 441246 | 115138 | Roadside | 100.0 | 100.0 | 25.2 | 26.1 | 25.5 | 23.1 | 21.8 | | N210 | 441122 | 115118 | Roadside | 100.0 | 100.0 | 27.7 | 30.0 | 28.7 | 26.3 | 24.9 | | N211 | 437332 | 113873 | Roadside | 100.0 | 100.0 | 21.4 | 21.0 | 22.0 | 19.7 | 18.1 | | N214 | 441677 | 115280 | Roadside | 100.0 | 100.0 | 25.5 | 26.8 | 26.7 | 23.3 | 22.9 | | N216 | 442352 | 113486 | Roadside | 92.5 | 92.5 | 25.1 | 27.9 | 27.8 | 26.0 | 24.7 | | Diffusion
Tube ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture
for
Monitoring
Period (%) | Valid
Data
Capture
2024
(%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |---------------------------|-------------------------------|--------------------------------|-----------|--|--|------|------|------|------|------| | N217 | 440751 | 112188 | Roadside | 100.0 | 100.0 | 28.2 | 26.8 | 27.4 | 24.4 | 24.0 | | N218 | 443547 | 114101 | Roadside | 92.5 | 92.5 | 26.9 | 30.6 | 27.3 | 27.4 | 24.0 | | N219 | 439248 | 112862 | Roadside | 83.0 | 83.0 | | | | 27.5 | 25.0 | | N220A,
N220B,
N220C | 441926 | 116956 | Roadside | 100.0 | 100.0 | | | | 27.1 | 26.8 | - ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22. - ☑ Diffusion tube data has been bias adjusted - ☑ Reported concentrations are those at the location of the monitoring site (bias adjusted and annualised, as required), i.e. prior to any fall-off with distance correction #### Notes: The annual mean concentrations are presented as µg/m³. Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**. NO_2 annual means exceeding $60\mu g/m^3$, indicating a potential exceedance of the NO_2 1-hour mean objective are shown in **bold and underlined**. Means for diffusion tubes have been corrected for bias. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. Concentrations are those at the location of monitoring and not those following any fall-off with distance adjustment. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.1 – Trends in Annual Mean NO₂ Concentrations Table A.5 – 1-Hour Mean NO₂ Monitoring Results, Number of 1-Hour Means > 200μg/m³ | Site ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring
Period (%) | Valid Data
Capture
2024 (%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |---------|-------------------------------|--------------------------------|------------|---|--|-------|------|------|------|------| | CM1 | 442579 | 112248 | Urban | | 97.4 | 0(96) | 0 | 0 | 0 | 0 | | CIVIT | 442313 | 112240 | Background | | 31.4 | 0(90) | U | 0 | 0 | 0 | | CM4 | 442304 | 112771 | Roadside | | 65.0 | 0 | 0 | 0 | 0 | 0 | | CM6 | 443751 | 111123 | Roadside | | 93.2 | 0 | 0 | 0 | 0 | 0 | | CM7 | 437809 | 113560 | Roadside | | 98.9 | 0 | 0 | 0 | 0 | 0 | ### Notes: Results are presented as the number of 1-hour periods where concentrations greater than 200µg/m³ have been recorded. Exceedances of the NO₂ 1-hour mean objective (200µg/m³ not to be exceeded more than 18 times/year) are shown in **bold**. If the period of valid data is less than 85%, the 99.8th percentile of 1-hour means is provided in brackets. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). ## Table A.6 – Annual Mean PM₁₀ Monitoring Results (μg/m³) | Site ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring
Period (%) | Valid Data
Capture
2024 (%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |---------|-------------------------------|--------------------------------|---------------------|---|--|------|------|------|------|------| | CM1 | 442579 | 112248 | Urban
Background | 100 | 99.9 | 15 | 14 | 16 | 14 | 11.4 | | CM7 | 437809 | 113560 | Roadside | 100 | 91.6 | 17 | 17 | 18 | 17 | 15.5 | [☑] Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22 ### Notes: The annual mean concentrations are presented as µg/m³. Exceedances of the PM₁₀ annual mean objective of 40µg/m³ are shown in **bold**. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.2 – Trends in Annual Mean PM₁₀ Concentrations ## Table A.7 – 24-Hour Mean PM₁₀ Monitoring Results, Number of PM₁₀ 24-Hour Means > 50μg/m³ | Site ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring
Period (%) | Valid Data
Capture
2024 (%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |---------|-------------------------------|--------------------------------|---------------------|---|--|------|------|------|------|------| | CM1 | 442579 | 112248 | Urban
background | | 99.9% | 1 | 1 | 1 | 0 | 0 | | CM2 | 437809 | 113560 | Roadside | | 91.6% | 2 | 2 | 2 | 4 | 2 | ## Notes: Results are presented as the number of 24-hour periods where daily mean concentrations greater than 50µg/m³ have been recorded. Exceedances of the PM₁₀ 24-hour mean objective (50µg/m³ not to be exceeded more than 35 times/year) are shown in **bold**. If the period of valid data is less than 85%, the 90.4th percentile of 24-hour means is provided in brackets. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out
for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.3 – Trends in Number of 24-Hour Mean PM₁₀ Results > 50μg/m³ ## Table A.8 – Annual Mean PM_{2.5} Monitoring Results (μg/m³) | Site ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data
Capture for
Monitoring
Period (%) | Valid Data
Capture
2024 (%) ⁽²⁾ | 2020 | 2021 | 2022 | 2023 | 2024 | |---------|-------------------------------|--------------------------------|---------------------|---|--|------|------|------|------|------| | CM1 | 442579 | 112248 | Urban
Background | | 99.9% | 9 | 9 | 9 | 8.3 | 6.9 | [☑] Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22 ### Notes: The annual mean concentrations are presented as µg/m³. All means have been "annualised" as per LAQM.TG22 if valid data capture for the full calendar year is less than 75%. See Appendix C for details. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). Figure A.4 – Trends in Annual Mean PM_{2.5} Concentrations ## Table A.9 – SO₂ 2024 Monitoring Results, Number of Relevant Instances | Site ID | X OS
Grid Ref
(Easting) | Y OS Grid
Ref
(Northing) | Site Type | Valid Data Capture
for Monitoring
Period (%) ⁽¹⁾ | Valid Data
Capture 2024
(%) ⁽²⁾ | Number of 15-
minute Means >
266µg/m³ | Number of 1-
hour Means >
350µg/m³ | Number of 24-
hour Means >
125µg/m³ | |---------|-------------------------------|--------------------------------|------------------|---|--|---|--|---| | CM1 | 442579 | 112279 | Urban Background | | 96% | 0 | 0 | 0 | ## Notes: Results are presented as the number of instances where monitored concentrations are greater than the objective concentration. Exceedances of the SO_2 objectives are shown in **bold** (15-min mean = 35 allowed a year, 1-hour mean = 24 allowed a year, 24-hour mean = 3 allowed a year). If the period of valid data is less than 85%, the relevant percentiles are provided in brackets. - (1) Data capture for the monitoring period, in cases where monitoring was only carried out for part of the year. - (2) Data capture for the full calendar year (e.g. if monitoring was carried out for 6 months, the maximum data capture for the full calendar year is 50%). ## **Appendix B: Full Monthly Diffusion Tube Results for 2024** Table B.1 - NO₂ 2024 Diffusion Tube Results (µg/m³) | DT ID | X OS Grid
Ref
(Easting) | Y OS Grid
Ref
(Northing | Jan | Feb | Mar | Apr | Мау | Jun | Jul | Aug | Sep | Oct | Nov | Dec | Annual Mean:
Raw Data | Annual Mean:
Annualised and
Bias Adjusted
<(0.84)> | Annual Mean:
Distance
Corrected to
Nearest
Exposure | Comment | |-------|-------------------------------|-------------------------------|------|------|------|------|------|------|------|------|------|------|------|------|--------------------------|---|---|---| | N100 | 444387 | 114453 | 21.1 | 20.0 | 16.9 | 12.1 | 13.5 | 10.2 | | | 12.9 | 16.6 | 20.7 | 17.7 | 16.2 | 13.6 | | | | N101 | 437548 | 113719 | 37.1 | 37.3 | 63.2 | 29.8 | 25.9 | 28.3 | 33.6 | 25.6 | 31.4 | 32.9 | 33.4 | 30.1 | 34.0 | 28.6 | - | | | N103 | 438808 | 112903 | 27.3 | 28.3 | 26.1 | 23.6 | 25.1 | 17.8 | 22.3 | 20.5 | 21.7 | 26.9 | 27.6 | 24.1 | 24.3 | 20.4 | - | | | N104 | 439222 | 112850 | 30.1 | 34.8 | 34.7 | 27.7 | 36.2 | 25.2 | 30.0 | 29.8 | 24.0 | 26.6 | 30.5 | 28.3 | 29.8 | 25.1 | - | | | N106 | 439752 | 113984 | 31.1 | 32.8 | 32.0 | 27.9 | 30.3 | 25.9 | 30.1 | 29.9 | 25.3 | 34.0 | 32.3 | 20.5 | 29.3 | 24.6 | - | | | N107 | 442364 | 112890 | 41.2 | 41.0 | 41.5 | 35.6 | 25.0 | 32.6 | 36.3 | 33.6 | 39.8 | 38.8 | 39.3 | 40.1 | 37.1 | 31.1 | - | | | N109 | 442585 | 113248 | 36.6 | 34.6 | 33.9 | 26.1 | 30.8 | 22.0 | 28.4 | 27.9 | 29.6 | 35.1 | 31.4 | 28.3 | 30.4 | 25.5 | - | | | N110 | 442579 | 112248 | 25.3 | 26.2 | 24.0 | 22.3 | 20.7 | 17.4 | 21.0 | 21.8 | 22.1 | | 27.7 | 25.7 | - | - | - | Triplicate Site with N110, N111
and N112 - Annual data
provided for N112 only | | N111 | 442579 | 112248 | 25.7 | 26.7 | 24.0 | 19.6 | 21.0 | | 26.4 | 21.1 | 21.3 | | 28.8 | 24.4 | - | - | - | Triplicate Site with N110, N111
and N112 - Annual data
provided for N112 only | | N112 | 442579 | 112248 | 26.5 | 29.5 | 24.8 | 21.0 | 22.4 | | | 21.6 | | | 29.3 | 26.9 | 23.5 | 19.7 | - | Triplicate Site with N110, N111
and N112 - Annual data
provided for N112 only | | N114 | 444131 | 113322 | 33.3 | 31.3 | 32.4 | 26.3 | 29.9 | 30.4 | 28.9 | 26.3 | 22.4 | 31.5 | 28.8 | 29.8 | 29.3 | 24.6 | - | | | N115 | 437939 | 113474 | 28.6 | | 26.7 | 23.4 | 28.3 | 21.6 | 24.2 | 24.7 | 22.4 | 27.4 | 26.8 | 21.2 | 25.0 | 21.0 | - | | | N116 | 437952 | 113407 | 29.6 | 24.9 | 25.0 | 25.1 | 26.1 | 21.5 | 23.0 | 21.4 | 27.4 | 30.9 | 30.2 | 24.1 | 25.8 | 21.6 | - | | | N117 | 443752 | 111121 | 29.4 | 33.2 | 28.1 | 25.0 | 26.7 | 25.8 | 27.3 | 27.7 | 28.6 | 32.8 | 32.3 | 28.9 | 28.8 | 24.2 | - | | | N118 | 442472 | 113065 | | 28.5 | 28.4 | 22.9 | 24.5 | 19.3 | 23.0 | | 25.3 | | 29.8 | 26.7 | 25.4 | 21.3 | - | | | N120 | 442716 | 111019 | 47.6 | 44.0 | 30.2 | | 33.8 | 30.6 | 31.8 | 28.7 | 36.5 | 34.5 | 38.6 | 32.6 | 35.3 | 29.7 | - | | | N122 | 440000 | 112633 | 26.8 | 29.7 | 25.1 | 17.6 | 26.0 | 19.3 | 23.1 | 23.7 | 20.3 | 25.6 | 26.5 | 26.1 | 24.2 | 20.3 | - | | | N124 | 439741 | 112753 | 30.4 | 34.9 | 29.8 | 24.8 | 25.4 | 22.5 | 27.1 | 25.6 | 27.1 | 32.5 | 31.8 | 28.4 | 28.4 | 23.8 | - | | | N125 | 443125 | 112641 | 32.0 | 31.0 | 30.9 | 26.4 | 31.1 | 22.4 | 30.0 | 27.8 | 28.3 | 33.1 | 33.0 | 28.9 | 29.6 | 24.8 | - | | |------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---|--| | N126 | 442365 | 112286 | 30.6 | 31.1 | 31.4 | 28.6 | 32.3 | 24.0 | 35.8 | | 31.6 | 35.7 | 37.5 | 29.8 | 31.7 | 26.6 | - | | | N129 | 442554 | 111021 | 29.2 | 26.8 | 24.5 | 22.4 | 23.9 | 22.5 | 24.7 | 22.1 | 25.2 | 27.5 | | 25.0 | 24.9 | 20.9 | - | | | N130 | 439346 | 112821 | 36.8 | 39.8 | 37.4 | 35.0 | 44.7 | 36.7 | 41.3 | 38.4 | 34.1 | 40.5 | 31.6 | 32.7 | 37.4 | 31.4 | - | | | N131 | 439378 | 114185 | 34.4 | 32.1 | 31.3 | 28.7 | 26.3 | 27.6 | 26.3 | 26.3 | 27.8 | 32.7 | 33.9 | 28.4 | 29.6 | 24.9 | - | | | N134 | 438980 | 112861 | 32.9 | 32.5 | 30.6 | 28.7 | 32.0 | 24.6 | 29.0 | 25.2 | 29.0 | 29.0 | 29.0 | 29.0 | 29.3 | 24.6 | - | | | N138 | 441697 | 115288 | 32.9 | 39.1 | 41.6 | 34.1 | 39.2 | 31.0 | 36.3 | 32.6 | 35.3 | 38.9 | 35.5 | 34.1 | 35.9 | 30.1 | - | | | N140 | 441628 | 112332 | 41.5 | 40.4 | 37.4 | 32.4 | 26.7 | 27.5 | 30.3 | 34.4 | 33.7 | 41.4 | 39.4 | 33.9 | 34.9 | 29.3 | - | | | N141 | 441923 | 110988 | 35.0 | 27.3 | 27.7 | 32.0 | 37.9 | 27.0 | 28.7 | 27.0 | 33.2 | 33.4 | 33.3 | 28.2 | 30.9 | 25.9 | - | | | N143 | 439457 | 114150 | 31.6 | 36.1 | 31.5 | 26.5 | 29.5 | 27.5 | 27.2 | 28.2 | | 32.9 | 31.2 | 29.7 | 30.2 | 25.3 | - | | | N149 | 441552 | 115247 | 33.9 | 39.6 | 39.7 | 32.5 | 32.7 | 29.2 | 28.5 | 29.6 | 30.9 | 37.8 | 35.7 | 34.2 | 33.7 | 28.3 | - | | | N151 | 439394 | 114176 | 31.0 | 34.7 | 33.0 | 27.4 | 30.8 | 26.0 | 26.9 | 28.5 | 26.9 | 29.7 | 11.7 | 29.3 | 28.0 | 23.5 | - | | | N152 | 437327 | 113848 | 39.2 | 38.8 | 36.3 | 31.5 | 33.4 | 28.4 | 31.0 | 28.5 | 32.4 | 30.1 | 37.9 | 32.2 | 33.3 | 28.0 | - | | | N158 | 443807 | 111123 | 35.4 | 35.0 | 33.4 | 27.2 | 30.1 | 26.5 | 30.9 | 24.8 | 28.3 | 34.8 | 33.7 | 29.0 | 30.8 | 25.8 | - | | | N159 | 443740 | 111147 | 35.4 | 30.7 | 25.5 | 28.2 | 28.5 | 25.8 | 25.1 | 25.7 | 31.5 | 33.2 | 36.4 | 29.1 | 29.6 | 24.9 | - | | | N162 | 442872 | 114336 | 32.5 | 34.7 | 36.0 | 27.9 | 27.1 | 26.7 | 29.2 | 28.3 | 28.0 | 32.4 | 31.0 | 31.4 | 30.4 | 25.5 | - | | | N165 | 442766 | 114181 | 30.6 | 32.0 | 33.2 | 25.7 | 25.2 | | 25.8 | 23.7 | 26.5 | 30.0 | 29.1 | 27.3 | 28.1 | 23.6 | - | | | N166 | 442251 | 112129 | 33.8 | 36.1 | 35.0 | 30.2 | 31.0 | 27.6 | 38.2 | 32.3 | 33.2 | 36.4 | | | 33.4 | 28.0 | - | | | N169 | 439361 | 114195 | 35.3 | 41.0 | 36.8 | 32.8 | 33.1 | 31.3 | 31.6 | 33.1 | 31.8 | 37.5 | 34.7 | 30.9 | 34.1 | 28.7 | - | | | N170 | 442482 | 111003 | | 38.6 | | 30.8 | 33.2 | 27.6 | 27.7 | 30.2 | 36.7 | 33.9 | 30.1 | | 32.1 | 27.0 | - | | | N172 | 441522 | 112126 | 32.4 | 32.4 | 30.6 | 26.4 | 25.7 | 25.6 | 35.2 | 30.6 | 30.1 | 31.8 | 33.0 | 33.7 | 30.6 | 25.7 | - | | | N174 | 443959 | 113315 | 37.7 | 38.5 | 33.8 | 33.9 | 31.4 | 25.7 | 35.1 | 33.9 | 31.4 | 35.4 | 38.3 | 34.0 | 34.1 | 28.6 | - | | | N177 | 439844 | 113907 | 35.2 | 28.5 | 32.8 | 27.2 | 32.8 | 21.0 | 25.9 | 25.8 | 24.5 | 37.5 | 34.9 | 27.6 | 29.5 | 24.8 | - | | | N178 | 437265 | 113682 | 21.8 | 20.9 | 21.1 | 16.8 | 20.4 | 10.8 | 18.0 | 15.2 | | 24.9 | 22.2 | 17.3 | 19.0 | 16.0 | - | | |-------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---| | N184A | 437811 | 113557 | 31.5 | 34.7 | 32.9 | 26.1 | 23.8 | 23.8 | 27.5 | 25.4 | 26.2 | 34.1 | 32.0 | 28.4 | - | - | - | Triplicate Site with N184A,
N184B and N184C - Annual
data provided for N184C only | | N184B | 437811 |
113557 | 31.4 | 37.8 | 33.0 | 29.2 | 23.5 | 20.3 | 27.5 | 24.7 | 26.2 | 32.3 | 33.4 | 27.2 | - | - | - | Triplicate Site with N184A,
N184B and N184C - Annual
data provided for N184C only | | N184C | 437811 | 113557 | 31.7 | 36.0 | 32.6 | 27.4 | 23.1 | 22.3 | 27.6 | 26.7 | 25.1 | 30.5 | 33.7 | 27.0 | 28.8 | 24.2 | - | Triplicate Site with N184A,
N184B and N184C - Annual
data provided for N184C only | | N189 | 441790 | 112465 | 35.5 | 27.3 | 24.0 | 24.8 | 22.2 | 20.7 | 21.3 | 24.2 | 30.3 | 30.0 | 30.6 | 26.8 | 26.5 | 22.2 | - | | | N191 | 441915 | 112097 | 34.1 | 42.5 | 47.0 | 40.1 | 35.9 | 28.0 | 39.4 | 32.4 | 31.4 | 37.8 | 37.7 | 35.5 | 36.8 | 30.9 | - | | | N192 | 441961 | 112029 | 41.9 | 40.2 | | 37.7 | 34.4 | 32.4 | 37.4 | 32.9 | 39.0 | | 31.4 | 45.6 | 37.3 | 31.3 | - | | | N193 | 441975 | 112031 | 29.6 | 31.6 | 32.9 | 28.0 | 25.8 | 22.5 | 27.3 | 26.7 | 26.6 | 27.5 | 31.2 | 30.7 | 28.4 | 23.8 | - | | | N194 | 442090 | 111775 | 43.7 | 48.8 | 54.4 | 46.9 | 45.4 | 41.1 | 48.3 | 49.0 | 45.1 | 47.6 | 46.5 | 51.5 | 47.4 | 39.8 | - | | | N195 | 441945 | 111655 | 33.9 | 33.8 | 31.0 | 30.4 | 30.6 | 25.8 | 29.7 | 27.7 | 33.2 | 32.5 | 28.5 | | 30.6 | 25.7 | - | | | N197 | 440957 | 115151 | 28.4 | 29.9 | 31.7 | 24.5 | 27.5 | 21.1 | 25.0 | 24.6 | 24.7 | 29.4 | 30.7 | 27.7 | 27.1 | 22.8 | - | | | N198A | 442304 | 112771 | 35.0 | 32.0 | 30.6 | 24.5 | 25.0 | 22.1 | 24.6 | 26.0 | 27.5 | 32.1 | 31.8 | 32.1 | - | - | - | Triplicate Site with N198A,
N198B and N198C - Annual
data provided for N198C only | | N198B | 442304 | 112771 | 34.4 | 33.5 | 32.0 | 26.6 | 23.8 | 22.7 | 25.0 | 25.2 | 28.8 | 28.8 | 31.7 | 24.3 | - | - | - | Triplicate Site with N198A,
N198B and N198C - Annual
data provided for N198C only | | N198C | 442304 | 112771 | 34.6 | 34.7 | 31.3 | 24.7 | 24.6 | 21.5 | 26.2 | 25.0 | 28.8 | 30.1 | 32.5 | 31.1 | 28.5 | 23.9 | - | Triplicate Site with N198A,
N198B and N198C - Annual
data provided for N198C only | | N199 | 442210 | 112583 | 31.0 | 35.7 | | 26.5 | 26.4 | 21.7 | 27.3 | 26.1 | 28.8 | 29.7 | 36.7 | 33.9 | 29.4 | 24.7 | - | | | N200 | 443160 | 112765 | 34.3 | 35.3 | 36.0 | 30.9 | 32.8 | 28.8 | 31.1 | 30.1 | 29.5 | 34.2 | 35.1 | 32.6 | 32.6 | 27.3 | - | | | N201 | 439759 | 112738 | 54.2 | 57.3 | 47.4 | 45.5 | 34.3 | 45.8 | 44.9 | 43.2 | 52.3 | 53.7 | 53.0 | 44.9 | 48.0 | 40.4 | 29.7 | | | N202 | 437166 | 113755 | 39.6 | | 38.8 | 34.4 | 37.5 | 31.2 | 38.6 | 34.4 | 35.8 | 39.2 | 46.0 | 38.7 | 37.6 | 31.6 | - | | | N204 | 442542 | 113261 | 33.8 | 33.5 | 33.6 | 28.1 | 30.5 | | 26.7 | 26.5 | 26.7 | 31.2 | 31.1 | 31.3 | 30.3 | 25.4 | - | | | N206 | 442265 | 112516 | 37.8 | 40.1 | 40.9 | 31.9 | 34.4 | 27.7 | 30.1 | | 34.1 | 23.2 | 39.7 | 33.7 | 34.0 | 28.5 | - | | | N207 | 439698 | 112806 | 29.6 | 35.1 | 29.3 | 23.4 | 28.4 | 21.0 | 25.4 | 26.1 | 23.1 | 30.5 | 30.9 | 26.3 | 27.4 | 23.0 | - | | | N208 | 441365 | 115202 | 29.2 | 31.5 | 34.3 | 23.1 | 24.6 | 20.0 | 26.0 | 21.7 | 26.5 | 32.3 | 29.8 | 29.0 | 27.3 | 23.0 | - | | | N209 | 441246 | 115138 | 28.3 | 32.1 | 29.4 | 24.6 | 23.4 | 20.4 | 21.4 | 21.4 | 23.2 | 28.4 | 30.6 | 28.6 | 26.0 | 21.8 | _ | | |-------|--------|--------|------|------|------|------|------|------|------|------|------|------|------|------|------|------|---|---| N210 | 441122 | 115118 | 35.0 | 36.9 | 34.3 | 28.9 | 25.6 | 26.8 | 26.4 | 27.0 | 24.1 | 32.2 | 31.6 | 27.0 | 29.7 | 24.9 | - | | | N211 | 437332 | 113873 | 27.0 | 24.4 | 23.6 | 19.0 | 24.0 | 14.6 | 18.0 | 17.4 | 20.2 | 25.9 | 24.6 | 19.5 | 21.5 | 18.1 | - | | | N214 | 441677 | 115280 | 28.4 | 31.6 | 32.0 | 25.6 | 26.9 | 21.3 | 25.2 | 23.3 | 25.5 | 31.3 | 28.6 | 28.1 | 27.3 | 22.9 | - | | | N216 | 442352 | 113486 | 32.3 | 36.3 | 34.1 | | 27.8 | 20.9 | 27.9 | 26.0 | 25.1 | 34.2 | 28.6 | 30.6 | 29.4 | 24.7 | - | | | N217 | 440751 | 112188 | 31.6 | 34.0 | 31.1 | 25.5 | 31.7 | 20.8 | 27.1 | 25.1 | 26.5 | 32.8 | 29.7 | 26.3 | 28.5 | 24.0 | - | | | N218 | 443547 | 114101 | 33.7 | 32.1 | 30.5 | 26.9 | 29.8 | 22.6 | 26.2 | 23.8 | | 28.3 | 30.5 | 30.3 | 28.6 | 24.0 | - | | | N219 | 439248 | 112862 | 32.4 | 36.8 | 34.3 | | | 23.0 | 29.0 | 27.6 | 23.1 | 34.0 | 30.0 | 27.6 | 29.8 | 25.0 | - | | | N220A | 441926 | 116956 | 36.7 | 27.0 | 32.8 | 29.3 | 33.4 | 23.2 | 29.1 | 20.2 | 31.7 | 39.4 | 38.7 | 30.1 | - | - | - | Triplicate Site with N220A,
N220B and N220C - Annual
data provided for N220C only | | N220B | 441926 | 116956 | 39.2 | 33.9 | 34.3 | 28.9 | 37.7 | 24.0 | 31.2 | 23.3 | 34.9 | 39.8 | 40.7 | 29.7 | - | - | - | Triplicate Site with N220A,
N220B and N220C - Annual
data provided for N220C only | | N220C | 441926 | 116956 | 33.9 | 32.9 | 31.1 | 30.4 | 34.6 | 22.0 | 27.9 | 25.8 | 27.8 | 41.0 | | 30.9 | 31.9 | 26.8 | - | Triplicate Site with N220A,
N220B and N220C - Annual
data provided for N220C only | - ☑ All erroneous data has been removed from the NO₂ diffusion tube dataset presented in Table B.1 - ☑ Annualisation has been conducted where data capture is <75% and >25% in line with LAQM.TG22 - ☐ Local bias adjustment factor used - ► National bias adjustment factor used - **☑** Where applicable, data has been distance corrected for relevant exposure in the final column - ☑ Southampton City Council confirm that all 2024 diffusion tube data has been uploaded to the Diffusion Tube Data Entry System. ## Notes: Exceedances of the NO₂ annual mean objective of 40µg/m³ are shown in **bold**. NO_2 annual means exceeding $60\mu g/m^3$, indicating a potential exceedance of the NO_2 1-hour mean objective are shown in **bold and underlined**. See Appendix C for details on bias adjustment and annualisation. # Appendix C: Supporting Technical Information / Air Quality Monitoring Data QA/QC ## New or Changed Sources Identified Within Southampton City Council During 2023 Southampton City Council is not aware of any new sources during 2024 ## Additional Air Quality Works Undertaken by Southampton City Council During 2023 Southampton City Council has not completed any additional works within the reporting year of 2024. ## **QA/QC** of Diffusion Tube Monitoring The determination of NO₂ diffusion tube precision is obtained from the triplicate sites on the sample inlet roof of the CM1 Brintons Road AURN Station and CM7 Redbridge AURN Station. Southampton use Gradko International Ltd for the supply and analysis of diffusion tubes. They are a UKAS accredited. SCC use the 20% TEA in water NO_x tubes. No changes in tube or preparation method were made in 2024. The tubes were changed in accordance with the 2023 Diffusion Tube Monitoring Calendar, except for a very small number of occasions due to staffing issues around leave and sickness. Gradko is accredited to ISO 17025:2017 They follow the procedures set out by the DEFRA Harmonisation Practical Guidance and participate in the AIR PT scheme for NO2 diffusion tube analysis and annual Inter-Comparison Exercise. Gradko International Ltd (Trading as Gradko Environmental) Testing Laboratory No. 2187 Is accredited in accordance with International Standard ISO/IEC 17025:2017 - General Requirements for the competence of testing and calibration laboratories. Initial Accreditation: 31 January 2001 Certificate Issued: 15 April 2020 This accreditation demonstrates technical competence for a defined scope specified in the schedule to this certificate, and the operation of a management system (refer joint ISO-ILAC-IAF Communiqué dated April 2017). The schedule to this certificate is an essential accreditation document and from time to time may be revised and reissued. The most recent issue of the schedule of accreditation, which bears the same accreditation number as this certificate, is available from www.ukas.com. This accreditation is subject to continuing conformity with United Kingdom Accreditation Service requirements. Locations, distances from nearest receptors and distances to relevant receptors for diffusion tubes are annually reviewed to ensure that GIS locations and measurements are accurate and up to date. ### **Diffusion Tube Annualisation** Annualisation was not required in 2024 ## **Diffusion Tube Bias Adjustment Factor** The diffusion tube data presented within the 2024 ASR have been corrected for bias using an adjustment factor. Bias represents the overall tendency of the diffusion tubes to under or over-read relative to the reference chemiluminescence analyser. LAQM.TG22 provides guidance with regard to the application of a bias adjustment factor to correct diffusion tube monitoring. Triplicate co-location studies can be used to determine a local bias factor based on the comparison of diffusion tube results with data taken from NO_x/NO₂ continuous analysers. Alternatively, the national database of diffusion tube co-location surveys provides bias factors for the relevant laboratory and preparation method. Southampton City Council have applied a national bias adjustment factor of 0.84 to the 2024 monitoring data. A summary of bias adjustment factors used by Southampton City Council over the past five years is presented in Table C.1. Table C.1 - Bias Adjustment Factor | Monitoring Year | Local or National | If National, Version of
National Spreadsheet | Adjustment Factor | |-----------------|-------------------|---|-------------------| | 2024 | National | 06/25 | 0.84 | | 2023 | National | 03/23 | 0.83 | | 2022 | National | 09/22 | 0.84 | | 2021 | National | 09/21 | 0.81 | | 2020 | National | 06/20 | 0.93 | Table C.2 – Local Bias Adjustment Calculation | | Local Bias
Adjustment
Input 1 | Local Bias
Adjustment
Input 2 | Local Bias
Adjustment
Input 3 | Local Bias
Adjustment
Input 4 | Local Bias
Adjustment
Input 5 | |--------------------------------|-------------------------------------|-------------------------------------
-------------------------------------|-------------------------------------|-------------------------------------| | Periods used to calculate bias | 10 | 12 | | | | | Bias Factor A | 0.84 (0.78 -
0.91) | 0.79 (0.75 -
0.83) | | | | | Bias Factor B | 19% (10% -
28%) | 27% (20% -
33%) | | | | | Diffusion Tube
Mean (µg/m³) | 24.1 | 28.8 | | | | | Mean CV
(Precision) | 5.0% | 3.2% | | | | | Automatic
Mean (µg/m³) | 20.2 | 22.8 | | | | | Data Capture | 100% | 100% | | | | | Adjusted Tube
Mean (µg/m³) | 20 (19 - 22) | 23 (22 - 24) | | | | ### Notes: A combined local bias adjustment factor of 0.86 has been calculated using the diffusion tube processing tool to provide a comparison with the national factor of 0.84 in 2024 diffusion tube results. It was decided to use the national factor as Southampton City Council has always used the national factor in the past. This is to ensure that previous years data can be consistently compared using the same method. There is only a 2% difference between the local and national factors. ## NO₂ Fall-off with Distance from the Road Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the Diffusion Tube Data Processing Tool/NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, non-automatic annual mean NO₂ concentrations corrected for distance are presented in Table B.1. Table C.3 – Non-Automatic NO₂ Fall off With Distance Calculations (concentrations presented in μg/m³) | Site
ID | Distance
(m):
Monitoring
Site to
Kerb | Distance
(m):
Receptor
to Kerb | Monitored
Concentration
(Annualised
and Bias
Adjusted | Background
Concentration | Concentration
Predicted at
Receptor | Comments | |------------|---|---|---|-----------------------------|---|---| | N194 | 4.0 | | 39.8 | 13.6 | - | Warning: Receptor to kerb must be between 0.1m and 50m to calculate concentration. Please check distances and update STEP 2 - Diffusion Tube Inputs tab Columns Distance to Relevant Exposure and | | N201 | 1.2 | 8.0 | 40.4 | 13.6 | 29.7 | Distance to Kerb of
Nearest Road | ## **QA/QC** of Automatic Monitoring CM1 and CM7 are part of the Automatic Urban and Rural Network (AURN). Details of quality assurance/control at AURN sites can be found at Defra's webpages⁷. CM4 and CM6 are supported by Air Quality Data Management (AQDM) and Envitech Europe Ltd which includes annual UKAS-accredited, to ISO 17025, independent equipment audits by NPL which exceed AURN standards. All data from the Southampton City Council owned stations has been ratified by AQDM for 2024. Audit results used extensively in measurement ratification. AQDM sub-contracts this specialist work to The National Physical Laboratory (NPL), the national measurement standards laboratory for the UK. NPL currently carries out around 180 audits per year under King's contracts. NPL is a world-leading centre of excellence in developing and applying accurate measurement standards. In addition to fulfilling the recommendations of LAQM TG16, NPL's audits meet the testing requirements for air quality measurement methods stipulated in the CEN standards (for example, NO₂ and NO_x: EN 14211:2005) which are specified for compliance with the EU ambient air quality directive (2008/50/EC). This arrangement also ensures equipment testing that is completely independent of the data management unit, the Local Site Operators and the Equipment Support Unit. NPL is accredited by UKAS to ISO 17025 for these measurements (Certificate 0478). The accredited activities at NPL are also covered by the lab-wide Quality Management System which has been certified by Lloyds Register Quality Assurance as conforming to ISO 9001:1994 since June 1996 (Certificate 938168). Their UKAS certificate for this work can be found at the following link: https://www.ukas.com/wp-content/uploads/schedule_uploads/00001/0478Calibration%20Multiple.pdf ## NPL audits comprise: Single-point zero and span tests using scrubbed zero air, certified gas cylinders, an ozone generator and reference photometer. air.defra.gov.uk/assets/documents/Data Validation and Ratification Process Apr 2017.pdf ⁷ https://uk- - Multi-point assessment of analyser linearity using diluted high concentration gases, an ozone generator and reference photometer. - Measurement of NO_X converter efficiency using gas phase titration. NPL is the only UK organisation to hold UKAS accreditation for this test. - Assessment of analyser zero and span noise. - Hydrocarbon interference test for SO₂ analysers. - Drift tests and certification of on-site gas standards. NPL is the only UK organisation to hold UKAS accreditation for this test. - Leak tests. - Multi-point verification of micro-balances for TEOMs and FDMSs using four preweighed filters. - Flow checks for particulate analysers. - Sampling system testing to assess any ambient sample loss in manifolds and inlet lines, as necessitated by recent revisions to CEN standards. NPL is the only UK organisation to hold UKAS accreditation for this test. AQDM also carry out measurement ratification where measurements collected over a long time period are subject to additional checks; previous validation decisions are reviewed with the benefit of hindsight and using a greater pool of information such as service records, calibration records and the results of intercalibration/audit. Measurement ratification is in accordance with LAQM TG16. Local Site Operation (LSO) duties are undertaken by trained SCC staff including fortnightly site visits to perform calibrations and onsite fault investigation. Servicing and maintenance of the 2 NOx Analysers was contracted to WCFA in 2022. Data is disseminated via. Air Quality in Southampton (southamptonair.org.uk) ## PM₁₀ and PM_{2.5} Monitoring Adjustment The type of PM₁₀/PM_{2.5} monitors utilised within Southampton City Council do not require the application of a correction factor. A Fidas is used for PM₁₀/PM_{2.5} monitoring at Southampton centre AURN and a BAM, which was recently replaced with a Fidas is used at the A33 AURN for PM₁₀ ## **Automatic Monitoring Annualisation** Table C.4 – Automatic NO₂ Annualisation Summary (concentrations presented in μg/m³ | | Annual
Data
Capture
(%) | Annual
Mean
(A _m) | CM4 | | <site id=""></site> | | <site id=""></site> | | <site id=""></site> | | |----------------------------|----------------------------------|-------------------------------------|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--|-------------------------------------|--| | Background
Site | | | Period
Mean
(P _m) | Ratio
(A _m /
P _m) | Period
Mean
(P _m) | Ratio
(A _m /
P _m) | Period
Mean
(P _m) | Ratio
(A _m /
P _m) | Period
Mean
(P _m) | Ratio
(A _m /
P _m) | | Southampton
Centre AURN | 100 | 20.1 | 18.9 | 1.065 | | | | | | | | Portsmouth AURN | 100 | 12.7 | 12.4 | 1.025 | | | | | | | | Average (R _a) | | | 1.045 | | | | | | | | | Raw Data Annual Mean (M) | | | 26.9 | | | | | | | | | Annualised A | 28.1 | | | | | | | | | | ## Table C.5 – Automatic PM₁₀ Annualisation Summary (concentrations presented in μg/m³ No annualisation was required ## Table C.6 – Automatic PM_{2.5} Annualisation Summary (concentrations presented in μg/m³ No annualisation was required ### NO₂ Fall-off with Distance from the Road Wherever possible, monitoring locations are representative of exposure. However, where this is not possible, the NO₂ concentration at the nearest location relevant for exposure has been estimated using the NO₂ fall-off with distance calculator available on the LAQM Support website. Where appropriate, automatic annual mean NO₂ concentrations corrected for distance are presented in Table A.3. Table C.7 – Automatic NO $_2$ Fall off With Distance Calculations (concentrations presented in $\mu g/m^3$) | Site
ID | Distance
(m):
Monitoring
Site to Kerb | Distance
(m):
Receptor
to Kerb | Monitored
Concentration
(Annualised
and Bias
Adjusted | Background
Concentration | Concentration
Predicted at
Receptor | Comments | |------------|--|---|---|-----------------------------|---|----------| | | | | | | | | # Appendix D: Map(s) of Monitoring Locations and AQMAs Figure D.1 – AQMA 1 Bevois Valley and NO2 diffusion tube monitoring locations Figure D.2 – AQMA 2 Bitterne Road and NO2 diffusion tube monitoring locations Figure D.3 – AQMA 3 Winchester Road and NO2 diffusion tube monitoring locations Figure D.4 – AQMA 4 Town Quay Road and NO2 diffusion tube monitoring locations Figure D.5 – AQMA 5a (western section) Redbridge Road and NO2 diffusion tube monitoring locations Figure D.6 – AQMA 5b (eastern section) Redbridge Road and NO2 diffusion tube monitoring locations Campe N150 N131 N151 N143 Figure D.7 – AQMA 6 Romsey Road and NO2 diffusion tube monitoring locations Figure D.8 – AQMA 8 Commercial Road and NO2 diffusion tube monitoring locations NZOS Figure D.9 – AQMA 9 Burgess Road
and NO2 diffusion tube monitoring locations Figure D.10 – AQMA 10 New Road and NO2 diffusion tube monitoring locations Figure D.11 – AQMA 11 Victoria Road and NO2 diffusion tube monitoring locations Figure D.12 – Bitterne Park and NO2 diffusion tube monitoring locations N172 CIVIC CENTRE ROAD ABOVE BAR STREET Palmerston Park Govt Subway Offices OGLE ROAD PW POUND TREE ROAD REGENT ST PORTLAND ST Houndwell FB **Park** West Quay hopping Centre HANOVER BUILDINGS N195 BARGATE ST Figure D.13 – City Centre and NO2 diffusion tube monitoring locations Figure D.14 – City Centre and Continuous Monitoring Station (CM1) location Bevois Town Bevois √alley Bedford Place Bellevue Figure D.15 – Bevois Valley and Continuous Monitoring Station (CM4) location Figure D.16 – Victoria Road and Continuous Monitoring Station (CM6) location Figure D.17 – Redbridge Road and Continuous Monitoring Station (CM7) location ## Appendix E: Summary of Air Quality Objectives in England Table E.1 – Air Quality Objectives in England⁸ | Pollutant | Air Quality Objective: Concentration | Air Quality
Objective:
Measured as | |--|--|--| | Nitrogen Dioxide (NO ₂) | 200μg/m³ not to be exceeded more than 18 times a year | 1-hour mean | | Nitrogen Dioxide (NO ₂) | 40μg/m³ | Annual mean | | Particulate Matter (PM ₁₀) | 50μg/m³, not to be exceeded more than 35 times a year | 24-hour mean | | Particulate Matter (PM ₁₀) | 40μg/m³ | Annual mean | | Sulphur Dioxide (SO ₂) | 350μg/m³, not to be exceeded more than 24 times a year | 1-hour mean | | Sulphur Dioxide (SO ₂) | 125μg/m³, not to be exceeded more than 3 times a year | 24-hour mean | | Sulphur Dioxide (SO ₂) | 266μg/m³, not to be exceeded more than 35 times a year | 15-minute mean | - $^{^{8}}$ The units are in microgrammes of pollutant per cubic metre of air ($\mu g/m^{3}$). ## **Glossary of Terms** | Abbreviation | Description | | |-------------------|---|--| | AQAP | Air Quality Action Plan - A detailed description of measures, outcomes, achievement dates and implementation methods, showing how the local authority intends to achieve air quality limit values' | | | AQMA | Air Quality Management Area – An area where air pollutant concentrations exceed / are likely to exceed the relevant air quality objectives. AQMAs are declared for specific pollutants and objectives | | | ASR | Annual Status Report | | | Defra | Department for Environment, Food and Rural Affairs | | | DMRB | Design Manual for Roads and Bridges – Air quality screening tool produced by National Highways | | | LAQM | Local Air Quality Management | | | NO ₂ | Nitrogen Dioxide | | | NOx | Nitrogen Oxides | | | PM ₁₀ | Airborne particulate matter with an aerodynamic diameter of 10μm or less | | | PM _{2.5} | Airborne particulate matter with an aerodynamic diameter of 2.5µm or less | | | QA/QC | Quality Assurance and Quality Control | | | SO ₂ | Sulphur Dioxide | | ## References - Local Air Quality Management Technical Guidance LAQM.TG22. August 2022. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland. - Local Air Quality Management Policy Guidance LAQM.PG22. August 2022. Published by Defra in partnership with the Scottish Government, Welsh Assembly Government and Department of the Environment Northern Ireland. - Chemical hazards and poisons report: Issue 28. June 2022. Published by UK Health Security Agency - Air Quality Strategy Framework for Local Authority Delivery. August 2023. Published by Defra. - Previous Southampton City Council ASR Reports <u>Southampton's statutory air quality</u> reports - Full Business Case for Achieving EU Nitrogen Dioxide Compliance in Southampton in the Shortest Possible Time Full Business Case v0.1 (southampton.gov.uk) Sustainable Distribution Centre (southampton.gov.uk)